coated conductors
Recently Published Documents


TOTAL DOCUMENTS

1648
(FIVE YEARS 184)

H-INDEX

57
(FIVE YEARS 5)

Author(s):  
Xinbo Hu ◽  
Anatolii A Polyanskii ◽  
Dmytro Abraimov ◽  
Andrey V. Gavrilin ◽  
Hubertus W Weijers ◽  
...  

Abstract Industrial production of REBa2Cu3O7-δ (REBCO) coated conductors made it possible to construct the 32 T magnet, the first successful all-superconducting user magnet to exceed 30 T, which now serves users as SCM4 (Superconducting Magnet) at the NHMFL. Here we present an analysis of the damage that occurred in late-stage proof testing of the 32 T prototype coil after many essential facets of the design had been proven through more than 100 intentionally triggered quenches at fields up to 24 T. This prototype coil was then subjected to accelerated charge-discharge cycles at a rate 44 times faster than its design ramp rate to attempt to address its fatigue tolerance. The extra hysteresis loss of the fast ramps led to heating of the end pancakes which induced, after 55 fatigue cycles, 3 spontaneous quenches at progressively lower currents. Recognizing that the coil was damaged, the pancakes were then unwound and their REBCO tapes run through our continuous in-field transport Ic and remnant-field magnetization monitoring device, YateStar, which revealed 3 highly localized zones of low Ic in the end pancake that induced quench. Careful examination of these zones, especially the most intensely damaged one, revealed that the worst hot spot reached at least 779C during the quenches. Magneto-optical imaging showed that this damaged zone was about 5 mm in diameter and indeed the perpendicular damage length induced in neighboring turns by this localized quench heating was almost as great. Although there is much present concern about fatigue crack propagation from edge defects, we actually attribute this damage not to fatigue but to fluctuations in vortex pinning density due to imperfect BaZrO3 (BZO) nanorod growth that locally reduced the critical current Ic. These localized low-Ic regions then had to shed their excess current into the copper stabilizer, producing intense heating. We provide transmission and scanning electron microscopy evidence for local fluctuations of the BZO pinning structure and relate it to recent work that shows significant variations of 4 K, high field Ic values due to apparent production fluctuations of the growth conditions of the Zr-doped Metal-Organic Chemical Vapor Deposition (MOCVD) REBCO used for this test magnet.


2022 ◽  
Author(s):  
Ferran Vallès ◽  
Anna Palau ◽  
Dmytro Abraimov ◽  
Jan Jaroszynski ◽  
Anca-Monia Constantinescu ◽  
...  

Abstract The magnetic flux pinning capabilities of YBa2Cu3O7−x (YBCO) coated conductors (CCs) vary strongly between different regions of the magnetic field-temperature (H-T) diagram and with the orientation of the magnetic field (θ). Here, we determine the optimal pinning landscape for a given H-T region by investigating the critical current density Jc(H,θ,T) in the 5-77 K temperature range, from self-field to very high magnetic fields (35 T). Our systematic analysis reveals the best directions to target to artificially engineer CCs in any region of interest. In solution-derived nanocomposites, we identify the relevance of coexisting high amounts of short stacking faults, Cu-O vacancy clusters and segmentation of twin boundaries, in combination with nanoparticles, for enhanced pinning performance at very high magnetic fields and low temperatures. Moreover, we demonstrate that twin boundaries preserve a high pinning energy in thick YBCO films, which is beneficial for the pinning performance at high magnetic fields and high temperatures.


Author(s):  
Xijie Luo ◽  
Yifan Zhao ◽  
Yusuke Sogabe ◽  
Hisaki Sakamoto ◽  
Satoshi Yamano ◽  
...  

Author(s):  
Masahiro Suyama ◽  
Sunseng Pyon ◽  
Yasuhiro Iijima ◽  
Satoshi Awaji ◽  
Tsuyoshi Tamegai

Abstract We have successfully trapped a field of 17.89 T at 6.5 K at the center of a compact coated-conductor (CC) stacks (13×12×11.7 mm3) within 75 min by suppressing flux jumps. The CC stack consists of 200 sheets of EuBa2Cu3O7 CCs with BaHfO3 nanorods to increase the critical current density at high fields and low temperatures. To enhance thermomagnetic stability, the central 50 CCs are coated with 1 µm thick Pb with large specific heat at low temperatures. Numerical calculations based on the actual J c-H characteristics reproduces the trapped field quantitatively. New directions for achieving even higher trapped field at higher temperatures and making use of the trapped field are discussed.


Author(s):  
Patrick Krkotić ◽  
Artur Romanov ◽  
Nikki Tagdulang ◽  
Guilherme Telles ◽  
Teresa Puig ◽  
...  

Abstract To assess the feasibility of using high-temperature superconductors for the beam screens of future circular colliders, we have undertaken a study of the power dependence of the microwave surface resistance in state-of-the-art REBCO coated conductors at about 8GHz and 50K. We have employed a dielectric resonator to produce radio-frequency electromagnetic fields on the surface of the coated conductors having amplitudes similar to those generated by proton bunches circulating in the vacuum chamber of the proposed hadron-hadron Future Circular Collider at CERN. We show that surface resistances in REBCO coated conductors without artificial pinning centers are more affected by a radio-frequency magnetic field than those containing nano-inclusions. Despite that, at 8GHz, 50K, and 9T, most REBCO coated conductors studied outperform copper in terms of surface resistance, with the best sample having a 2.3mΩ surface resistance while being subject to an RF field 2.5 times stronger than that in the FCC-hh. We also extrapolate the measured data to 16T and 1GHz, the actual FCC-hh dipole magnetic field, and mid beam frequency spectrum, demonstrating the possibility of lowering the surface resistance of the vacuum chamber by up to two orders of magnitude compared to copper. Further, we discuss the correlation between the time structure of the electromagnetic fields provided by vector network analyzers compared to the proton bunches' time structure in the collider and present the effect of low alternating magnetic fields on vortex displacement and the possibility of demagnetization of superconducting samples.


Author(s):  
Naoyuki Amemiya ◽  
Mao Shigemasa ◽  
Akira Takahashi ◽  
Ning Wang ◽  
Yusuke Sogabe ◽  
...  

Abstract We wound copper-plated multifilament coated conductors spirally on a round core to decouple filaments electromagnetically under ac transverse magnetic fields and measured their magnetisation losses. Although the coated conductors were plated with copper, which connects all filaments electrically and allows current sharing among them, the spiral geometry decoupled filaments similar to the twist geometry, and the magnetisation loss was reduced effectively by the multifilament structure. The measured magnetisation loss of a 4 mm-wide, 10-filament coated conductor with a 20 μm-thick copper wound spirally on a 3 mm-core was only 7% of that of the same 10-filament coated conductor with a straight shape under an ac transverse magnetic field with an amplitude and frequency of 100 mT and 65.44 Hz, respectively. We separated the measured magnetisation losses into hysteresis and coupling losses and discussed the influence of filament width, copper thickness, and core diameter on both losses. We compared the hysteresis losses with the analytical values given by Brandt and Indenbom and compared the coupling losses with the values calculated using a general expression of coupling loss with the coupling time constants and geometry factors.


Author(s):  
Bruno de Sousa Alves ◽  
Valtteri Lahtinen ◽  
Marc Laforest ◽  
Frederic Sirois

Abstract This paper presents a novel finite-element approach for the electromagnetic modeling of superconducting coated conductors with transport currents. We combine a thin-shell (TS) method to the H-Φ formulation to avoid the meshing difficulties related to the high aspect ratio of these conductors and reduce the computational burden in simulations. The interface boundary conditions in the TS method are defined using an auxiliary 1-D finite-element (FE) discretization of N elements along the thinnest dimension of the conductor. This procedure permits the approximation of the superconductor's nonlinearities inside the TS in a time-transient analysis. Four application examples of increasing complexity are discussed: (i) single coated conductor, (ii) two closely packed conductors carrying anti-parallel currents, (iii) a stack of twenty superconducting tapes and a (iv) full representation of a HTS tape comprising a stack of thin films. In all these examples, the profiles of both the tangential and normal components of the magnetic field show good agreement with a reference solution obtained with standard black2-D H-Φ formulation. Results are also compared with the widely used T-A formulation. This formulation is shown to be dual to the TS model with a single FE (N=1) in the auxiliary 1-D systems. The increase of N in the TS model is shown to be advantageous at small inter-tape separation and low transport current since it allows the tangential components of the magnetic field to penetrate the thin region. The reduction in computational cost without compromising accuracy makes the proposed model promising for the simulation of large-scale superconducting applications.


Author(s):  
Vladimir L Sokolovsky ◽  
Leonid Prigozhin

Abstract Numerical simulation of superconducting devices is a powerful tool for understanding the principles of their work and improving their design. Usually, such simulations are based on a finite element method but, recently, a different approach, based on the spectral technique, has been presented for very efficient solution of several applied superconductivity problems described by one-dimensional integro-differential equations or a system of such equations. Here we propose a new pseudospectral method for two-dimensional magnetization and transport current superconducting strip problems with an arbitrary current-voltage relation, spatially inhomogeneous strips, and strips in a nonuniform applied field. The method is based on the bivariate expansions in Chebyshev polynomials and Hermite functions. It can be used for numerical modeling magnetic flux pumps of different types and investigating AC losses in coated conductors with local defects. Using a realistic two-dimensional version of the superconducting dynamo benchmark problem as an example, we showed that our new method is a competitive alternative to finite element methods.


2021 ◽  
Author(s):  
◽  
Anne-Hélène Puichaud

<p>High-temperature superconductors are of great interest because they can transport electrical current without loss. For real-world applications, the amount of current, known as the critical current Ic, that can be carried by superconducting wires is the key figure of merit. Large Ic values are necessary to off-set the higher cost of these wires. The factors that improve Ic (microstructure/performance relationship) in the state-of-the-art coated conductor wires based on YBa₂Cu₃O₇ (YBCO) are not fully understood. However, microstructural defects that immobilise (or pin) tubes of magnetic flux (known as vortices) inside the coated conductors are known to play a role in improving Ic. In this thesis, the vortex-defect interaction in YBCO superconductors was investigated with high-end transmission electron microscopy (TEM) techniques using two approaches.  First, the effect of dysprosium (Dy) addition and oxygenation temperature on the microstructure and critical current were investigated in detail. Changing only the oxygenation temperature leads to many microstructural changes in pure YBCO coated conductors. It was found that Dy addition reduces the sensitivity of the YBCO to the oxygenation temperature, in particular it lowers the microstructural disorder while maintaining the formation of nanoparticles, which both contribute to the enhancement of Ic.  In the second approach, two TEM based techniques (off-axis electron holography and Lorentz microscopy) were used to study the magnetic flux vortices. Vortex imaging was attempted with a TEM operated at 300 kV on both a YBCO crystal as well as a YBCO coated conductor. Many challenges were encountered including sample preparation, inhomogeneity, and geometry, in addition to the need to perform measurements at cryogenic temperatures. Although vortices were not able to be observed in the coated conductors, tentative observation of vortices in a YBCO crystal was made using Lorentz microscopy. Improvements for future electron holography experiments on YBCO at low voltage are suggested. This work represents a pioneering step towards directly imaging vortices in YBCO using more widely available microscopes with the aim of better understanding flux pinning to ultimately boost Ic in superconducting wires.</p>


Sign in / Sign up

Export Citation Format

Share Document