firefly optimization
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 81)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
pp. 1-20
Author(s):  
V. R. Elgin Christo ◽  
H. Khanna Nehemiah ◽  
S. Keerthana Sankari ◽  
Shiney Jeyaraj ◽  
A. Kannan

2021 ◽  
Vol 35 (6) ◽  
pp. 447-456
Author(s):  
Preet Kamal Kaur ◽  
Kanwal Preet Singh Attwal ◽  
Harmandeep Singh

With the continuous advancements in Information and Communication Technology, healthcare data is stored in the electronic forms and accessed remotely according to the requirements. However, there is a negative impact like unauthorized access, misuse, stealing of the data, which violates the privacy concern of patients. Sensitive information, if not protected, can become the basis for linkage attacks. Paper proposes an improved Privacy-Preserving Data Classification System for Chronic Kidney Disease dataset. Focus of the work is to predict the disease of patients’ while preventing the privacy breach of their sensitive information. To accomplish this goal, a metaheuristic Firefly Optimization Algorithm (FOA) is deployed for random noise generation (instead of fixed noise) and this noise is added to the least significant bits of sensitive data. Then, random forest classifier is applied on both original and perturbed dataset to predict the disease. Even after perturbation, technique preserves required significance of prediction results by maintaining the balance between utility and security of data. In order to validate the results, proposed method is compared with the existing technology on the basis of various evaluation parameters. Results show that proposed technique is suitable for healthcare applications where both privacy protection and accurate prediction are necessary conditions.


Author(s):  
Bharathi Garimella ◽  
G. V. S. N. R. V. Prasad ◽  
M. H. M. Krishna Prasad

The churn prediction based on telecom data has been paid great attention because of the increasing the number telecom providers, but due to inconsistent data, sparsity, and hugeness, the churn prediction becomes complicated and challenging. Hence, an effective and optimal prediction of churns mechanism, named adaptive firefly-spider optimization (adaptive FSO) algorithm, is proposed in this research to predict the churns using the telecom data. The proposed churn prediction method uses telecom data, which is the trending domain of research in predicting the churns; hence, the classification accuracy is increased. However, the proposed adaptive FSO algorithm is designed by integrating the spider monkey optimization (SMO), firefly optimization algorithm (FA), and the adaptive concept. The input data is initially given to the master node of the spark framework. The feature selection is carried out using Kendall’s correlation to select the appropriate features for further processing. Then, the selected unique features are given to the master node to perform churn prediction. Here, the churn prediction is made using a deep convolutional neural network (DCNN), which is trained by the proposed adaptive FSO algorithm. Moreover, the developed model obtained better performance using the metrics, like dice coefficient, accuracy, and Jaccard coefficient by varying the training data percentage and selected features. Thus, the proposed adaptive FSO-based DCNN showed improved results with a dice coefficient of 99.76%, accuracy of 98.65%, Jaccard coefficient of 99.52%.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7286
Author(s):  
Muhammad Attique Khan ◽  
Majed Alhaisoni ◽  
Usman Tariq ◽  
Nazar Hussain ◽  
Abdul Majid ◽  
...  

In healthcare, a multitude of data is collected from medical sensors and devices, such as X-ray machines, magnetic resonance imaging, computed tomography (CT), and so on, that can be analyzed by artificial intelligence methods for early diagnosis of diseases. Recently, the outbreak of the COVID-19 disease caused many deaths. Computer vision researchers support medical doctors by employing deep learning techniques on medical images to diagnose COVID-19 patients. Various methods were proposed for COVID-19 case classification. A new automated technique is proposed using parallel fusion and optimization of deep learning models. The proposed technique starts with a contrast enhancement using a combination of top-hat and Wiener filters. Two pre-trained deep learning models (AlexNet and VGG16) are employed and fine-tuned according to target classes (COVID-19 and healthy). Features are extracted and fused using a parallel fusion approach—parallel positive correlation. Optimal features are selected using the entropy-controlled firefly optimization method. The selected features are classified using machine learning classifiers such as multiclass support vector machine (MC-SVM). Experiments were carried out using the Radiopaedia database and achieved an accuracy of 98%. Moreover, a detailed analysis is conducted and shows the improved performance of the proposed scheme.


2021 ◽  
Vol 7 ◽  
pp. 609-615
Author(s):  
K. Mohana sundaram ◽  
C.S. Boopathi ◽  
A. Pandian ◽  
Kalyan Sagar Kadali ◽  
Ravishankar Sathyamurthy ◽  
...  

Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lantian Li ◽  
Bahareh Pahlevanzadeh

PurposeCloud eases information processing, but it holds numerous risks, including hacking and confidentiality problems. It puts businesses at risk in terms of data security and compliance. This paper aims to maximize the covered human resource (HR) vulnerabilities and minimize the security costs in the enterprise cloud using a fuzzy-based method and firefly optimization algorithm.Design/methodology/approachCloud computing provides a platform to improve the quality and availability of IT resources. It changes the way people communicate and conduct their businesses. However, some security concerns continue to derail the expansion of cloud-based systems into all parts of human life. Enterprise cloud security is a vital component in ensuring the long-term stability of cloud technology by instilling trust. In this paper, a fuzzy-based method and firefly optimization algorithm are suggested for optimizing HR vulnerabilities while mitigating security expenses in organizational cloud environments. MATLAB is employed as a simulation tool to assess the efficiency of the suggested recommendation algorithm. The suggested approach is based on the firefly algorithm (FA) since it is swift and reduces randomization throughout the lookup for an optimal solution, resulting in improved performance.FindingsThe fuzzy-based method and FA unveil better performance than existing met heuristic algorithms. Using a simulation, all the results are verified. The study findings showed that this method could simulate complex and dynamic security problems in cloud services.Practical implicationsThe findings may be utilized to assist the cloud provider or tenant of the cloud infrastructure system in taking appropriate risk mitigation steps.Originality/valueUsing a fuzzy-based method and FA to maximize the covered HR vulnerabilities and minimize the security costs in the enterprise cloud is the main novelty of this paper.


Sign in / Sign up

Export Citation Format

Share Document