dice coefficient
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 126)

H-INDEX

9
(FIVE YEARS 4)

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Zhiyong Fan ◽  
Jianmin Hou ◽  
Qiang Zang ◽  
Yunjie Chen ◽  
Fei Yan

River segmentation of remote sensing images is of important research significance and application value for environmental monitoring, disaster warning, and agricultural planning in an area. In this study, we propose a river segmentation model in remote sensing images based on composite attention network to solve the problems of abundant river details in images and the interference of non-river information including bridges, shadows, and roads. To improve the segmentation efficiency, a composite attention mechanism is firstly introduced in the central region of the network to obtain the global feature dependence of river information. Next, in this study, we dynamically combine binary cross-entropy loss that is designed for pixel-wise segmentation and the Dice coefficient loss that measures the similarity of two segmentation objects into a weighted one to optimize the training process of the proposed segmentation network. The experimental results show that compared with other semantic segmentation networks, the evaluation indexes of the proposed method are higher than those of others, and the river segmentation effect of CoANet model is significantly improved. This method can segment rivers in remote sensing images more accurately and coherently, which can meet the needs of subsequent research.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ping Zhang ◽  
Ran Xu Zhang ◽  
Xiao Shuai Chen ◽  
Xiao Yue Zhou ◽  
Esther Raithel ◽  
...  

Abstract Background The cartilage segmentation algorithms make it possible to accurately evaluate the morphology and degeneration of cartilage. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degeneration) that may influence the accuracy of segmentation. It is valuable to evaluate and compare the accuracy and clinical value of volume and mean T2* values generated directly from automatic knee cartilage segmentation with those from manually corrected results using prototype software. Method Thirty-two volunteers were recruited, all of whom underwent right knee magnetic resonance imaging examinations. Morphological images were obtained using a three-dimensional (3D) high-resolution Double-Echo in Steady-State (DESS) sequence, and biochemical images were obtained using a two-dimensional T2* mapping sequence. Cartilage score criteria ranged from 0 to 2 and were obtained using the Whole-Organ Magnetic Resonance Imaging Score (WORMS). The femoral, patellar, and tibial cartilages were automatically segmented and divided into subregions using the post-processing prototype software. Afterwards, all the subregions were carefully checked and manual corrections were done where needed. The dice coefficient correlations for each subregion by the automatic segmentation were calculated. Results Cartilage volume after applying the manual correction was significantly lower than automatic segmentation (P < 0.05). The percentages of the cartilage volume change for each subregion after manual correction were all smaller than 5%. In all the subregions, the mean T2* relaxation time within manual corrected subregions was significantly lower than in regions after automatic segmentation (P < 0.05). The average time for the automatic segmentation of the whole knee was around 6 min, while the average time for manual correction of the whole knee was around 27 min. Conclusions Automatic segmentation of cartilage volume has a high dice coefficient correlation and it can provide accurate quantitative information about cartilage efficiently without individual bias. Advances in knowledge: Magnetic resonance imaging is the most promising method to detect structural changes in cartilage tissue. Unfortunately, due to the structure and morphology of the cartilages obtaining accurate segmentations can be problematic. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degeneration) that may influence segmentation accuracy. We therefore assessed the factors that influence segmentations error.


2022 ◽  
pp. 1-16
Author(s):  
Shweta Tyagi ◽  
Sanjay N. Talbar ◽  
Abhishek Mahajan

Cancer is one of the most life-threatening diseases in the world, and lung cancer is the leading cause of death worldwide. If not detected at an early stage, the survival rate of lung cancer patients can be very low. To treat patients in later stages, one needs to analyze the tumour region. For accurate diagnosis of lung cancer, the first step is to detect and segment the tumor. In this chapter, an approach for segmentation of a lung tumour is presented. For pre-processing of lung CT images, simple image processing like morphological operations is used, and for tumour segmentation task, a 3D convolutional neural network (CNN) is used. The CNN architecture consists of a 3D encoder block followed by 3D decoder block just like U-Net but with deformable convolution blocks. For this study, two datasets have been used; one is the online-available NSCLC Radiomics dataset, and the other is collected from an Indian local hospital. The approach proposed in this chapter is evaluated in terms of dice coefficient. This approach is able to give significant results with a dice coefficient of 77.23%.


Author(s):  
Shelly Garg ◽  
Balkrishan Jindal

The main purpose of this study is to find an optimum method for segmentation of skin lesion images. In the present world, Skin cancer has proved to be the most deadly disease. The present research paper has developed a model which encompasses two gradations, the first being pre-processing for the reduction of unwanted artefacts like hair, illumination or many other by enhanced technique using threshold and morphological operations to attain higher accuracy and the second being segmentation by using k-mean with optimized Firefly Algorithm (FFA) technique. The online image database from the International Skin Imaging Collaboration (ISIC) archive dataset and dermatology service of Hospital Pedro Hispano (PH2) dataset has been used for input sample images. The parameters on which the proposed method is measured are sensitivity, specificity, dice coefficient, jacquard index, execution time, accuracy, error rate. From the results, authors have observed proposed model gives the average accuracy value of huge number of cancer images using ISIC dataset is 98.9% and using PH2 dataset is 99.1% with minimize average less error rate. It also estimates the dice coefficient value 0.993 using ISIC and 0.998 using PH2 datasets. However, the results for the rest of the parameters remain quite the same. Therefore the outcome of this model is highly reassuring.


Author(s):  
Bharathi Garimella ◽  
G. V. S. N. R. V. Prasad ◽  
M. H. M. Krishna Prasad

The churn prediction based on telecom data has been paid great attention because of the increasing the number telecom providers, but due to inconsistent data, sparsity, and hugeness, the churn prediction becomes complicated and challenging. Hence, an effective and optimal prediction of churns mechanism, named adaptive firefly-spider optimization (adaptive FSO) algorithm, is proposed in this research to predict the churns using the telecom data. The proposed churn prediction method uses telecom data, which is the trending domain of research in predicting the churns; hence, the classification accuracy is increased. However, the proposed adaptive FSO algorithm is designed by integrating the spider monkey optimization (SMO), firefly optimization algorithm (FA), and the adaptive concept. The input data is initially given to the master node of the spark framework. The feature selection is carried out using Kendall’s correlation to select the appropriate features for further processing. Then, the selected unique features are given to the master node to perform churn prediction. Here, the churn prediction is made using a deep convolutional neural network (DCNN), which is trained by the proposed adaptive FSO algorithm. Moreover, the developed model obtained better performance using the metrics, like dice coefficient, accuracy, and Jaccard coefficient by varying the training data percentage and selected features. Thus, the proposed adaptive FSO-based DCNN showed improved results with a dice coefficient of 99.76%, accuracy of 98.65%, Jaccard coefficient of 99.52%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Deepak S. Uplaonkar ◽  
Virupakshappa ◽  
Nagabhushan Patil

PurposeThe purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approachAfter collecting the ultrasound images, contrast-limited adaptive histogram equalization approach (CLAHE) is applied as preprocessing, in order to enhance the visual quality of the images that helps in better segmentation. Then, adaptively regularized kernel-based fuzzy C means (ARKFCM) is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.FindingsThe proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost. The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient, dice coefficient, precision, Matthews correlation coefficient, f-score and accuracy. The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value, which is better than the existing algorithms.Practical implicationsFrom the experimental analysis, the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm. However, the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/valueThe image preprocessing is carried out using CLAHE algorithm. The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm. In this research, the proposed algorithm has advantages such as independence of clustering parameters, robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.


Author(s):  
V. K. Deepak ◽  
R. Sarath

In the medical image-processing field brain tumor segmentation is aquintessential task. Thereby early diagnosis gives us a chance of increasing survival rate. It will be way much complex and time consuming when comes to processing large amount of MRI images manually, so for that we need an automatic way of brain tumor image segmentation process. This paper aims to gives a comparative study of brain tumor segmentation, which are MRI-based. So recent methods of automatic segmentation along with advanced techniques gives us an improved result and can solve issue better than any other methods. Therefore, this paper brings comparative analysis of three models such as Deformable model of Fuzzy C-Mean clustering (DMFCM), Adaptive Cluster with Super Pixel Segmentation (ACSP) and Grey Wolf Optimization based ACSP (GWO_ACSP) and these are tested on CANCER IMAGE ACHRCHIEVE which is a preparation information base containing High Grade and Low-Grade astrocytoma tumors. Here boundaries including Accuracy, Dice coefficient, Jaccard score and MCC are assessed and along these lines produce the outcomes. From this examination the test consequences of Grey Wolf Optimization based ACSP (GWO_ACSP) gives better answer for mind tumor division issue.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chunli Ma ◽  
Hong Li ◽  
Kui Zhang ◽  
Yuzhu Gao ◽  
Lei Yang

This study was aimed to explore the magnetic resonance imaging (MRI) image features based on the fuzzy local information C-means clustering (FLICM) image segmentation method to analyze the risk factors of restroke in patients with lacunar infarction. In this study, based on the FLICM algorithm, the Canny edge detection algorithm and the Fourier shape descriptor were introduced to optimize the algorithm. The difference of Jaccard coefficient, Dice coefficient, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), running time, and segmentation accuracy of the optimized FLICM algorithm and other algorithms when the brain tissue MRI images were segmented was studied. 36 patients with lacunar infarction were selected as the research objects, and they were divided into a control group (no restroke, 20 cases) and a stroke group (restroke, 16 cases) according to whether the patients had restroke. The differences in MRI imaging characteristics of the two groups of patients were compared, and the risk factors for restroke in lacunar infarction were analyzed by logistic multivariate regression. The results showed that the Jaccard coefficient, Dice coefficient, PSNR value, and SSIM value of the optimized FLICM algorithm for segmenting brain tissue were all higher than those of other algorithms. The shortest running time was 26 s, and the highest accuracy rate was 97.86%. The proportion of patients with a history of hypertension, the proportion of patients with paraventricular white matter lesion (WML) score greater than 2 in the stroke group, the proportion of patients with a deep WML score of 2, and the average age of patients in the stroke group were much higher than those in the control group ( P < 0.05 ). Logistic multivariate regression showed that age and history of hypertension were risk factors for restroke after lacunar infarction ( P < 0.05 ). It showed that the optimized FLICM algorithm can effectively segment brain MRI images, and the risk factors for restroke in patients with lacunar infarction were age and hypertension history. This study could provide a reference for the diagnosis and prognosis of lacunar infarction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bin Guo ◽  
Fugen Zhou ◽  
Bo Liu ◽  
Xiangzhi Bai

Cerebrovascular segmentation is important in various clinical applications, such as surgical planning and computer-aided diagnosis. In order to achieve high segmentation performance, three challenging problems should be taken into consideration: (1) large variations in vascular anatomies and voxel intensities; (2) severe class imbalance between foreground and background voxels; (3) image noise with different magnitudes. Limited accuracy was achieved without considering these challenges in deep learning-based methods for cerebrovascular segmentation. To overcome the limitations, we propose an end-to-end adversarial model called FiboNet-VANGAN. Specifically, our contributions can be summarized as follows: (1) to relieve the first problem mentioned above, a discriminator is proposed to regularize for voxel-wise distribution consistency between the segmentation results and the ground truth; (2) to mitigate the problem of class imbalance, we propose to use the addition of cross-entropy and Dice coefficient as the loss function of the generator. Focal loss is utilized as the loss function of the discriminator; (3) a new feature connection is proposed, based on which a generator called FiboNet is built. By incorporating Dice coefficient in the training of FiboNet, noise robustness can be improved by a large margin. We evaluate our method on a healthy magnetic resonance angiography (MRA) dataset to validate its effectiveness. A brain atrophy MRA dataset is also collected to test the performance of each method on abnormal cases. Results show that the three problems in cerebrovascular segmentation mentioned above can be alleviated and high segmentation accuracy can be achieved on both datasets using our method.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Arianna Sala ◽  
Silvia Paola Caminiti ◽  
Luca Presotto ◽  
Andrea Pilotto ◽  
Claudio Liguori ◽  
...  

Abstract Background Preclinical and pathology evidence suggests an involvement of brain dopamine (DA) circuitry in Alzheimer’s disease (AD). We in vivo investigated if, when, and in which target regions [123I]FP-CIT-SPECT regional binding and molecular connectivity are damaged along the AD course. Methods We retrospectively selected 16 amyloid-positive subjects with mild cognitive impairment due to AD (AD-MCI), 22 amyloid-positive patients with probable AD dementia (AD-D), and 74 healthy controls, all with available [123I]FP-CIT-SPECT imaging. We tested whether nigrostriatal vs. mesocorticolimbic dopaminergic targets present binding potential loss, via MANCOVA, and alterations in molecular connectivity, via partial correlation analysis. Results were deemed significant at p < 0.05, after Bonferroni correction for multiple comparisons. Results We found significant reductions of [123I]FP-CIT binding in both AD-MCI and AD-D compared to controls. Binding reductions were prominent in the major targets of the ventrotegmental-mesocorticolimbic pathway, namely the ventral striatum and the hippocampus, in both clinical groups, and in the cingulate gyrus, in patients with dementia only. Within the nigrostriatal projections, only the dorsal caudate nucleus showed reduced [123I]FP-CIT binding, in both groups. Molecular connectivity assessment revealed a widespread loss of inter-connections among subcortical and cortical targets of the mesocorticolimbic network only (poor overlap with the control group as expressed by a Dice coefficient ≤ 0.25) and no alterations of the nigrostriatal network (high overlap with controls, Dice coefficient = 1). Conclusion Local- and system-level alterations of the mesocorticolimbic dopaminergic circuitry characterize AD, already in prodromal disease phases. These results might foster new therapeutic strategies for AD. The clinical correlates of these findings deserve to be carefully considered within the emergence of both neuropsychiatric symptoms and cognitive deficits.


Sign in / Sign up

Export Citation Format

Share Document