plant acclimation
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Brigitte Ksas ◽  
Jean Alric ◽  
Stefano Caffarri ◽  
Michel Havaux

2021 ◽  
Author(s):  
Yosef Fichman ◽  
Haiyan Xiong ◽  
Soham Sengupta ◽  
Rajeev K Azad ◽  
Julian M Hibberd ◽  
...  

Plants are essential for life on Earth converting light into chemical energy in the form of sugars. To adjust for changes in light intensity and quality, and to become as efficient as possible in harnessing light, plants utilize multiple light receptors, signaling, and acclimation mechanisms. In addition to altering plant metabolism, development and growth, light cues sensed by some photoreceptors, such as phytochromes, impact on many plant responses to biotic and abiotic stresses. Central for plant responses to different stresses are reactive oxygen species (ROS) that function as key signaling molecules. Recent studies demonstrated that respiratory burst oxidase homolog (RBOH) proteins that reside at the plasma membrane and produce ROS at the apoplast play a key role in plant responses to different biotic and abiotic stresses. Here we reveal that phytochrome B (phyB) and RBOHs function as part of a key regulatory module that controls ROS production, transcript expression, and plant acclimation to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol, and that phyB, RBOHD and RBOHF co-regulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Taken together, our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating ROS production, and that phyB and RBOHs function in the same pathway.


2021 ◽  
pp. 104811
Author(s):  
Bruna L. Merlin ◽  
Lucia P. Ferreira ◽  
Wesley A.C. Godoy ◽  
Gilberto J. Moraes ◽  
Fernando L. Cônsoli

2021 ◽  
Author(s):  
Anna Schulten ◽  
Bjoern Pietzenuk ◽  
Julia Quintana ◽  
Marcus Krause ◽  
Regina Feil ◽  
...  

Copper (Cu) is a cofactor of around 300 Arabidopsis proteins including photosynthetic and mitochondrial electron transfer chain enzymes critical for ATP production and carbon fixation. Plant acclimation to Cu deficiency requires the transcription factor SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7). We report that in the wild type and in the spl7-1 mutant, respiratory electron flux via Cu-dependent cytochrome c oxidase remained unaffected under both normal and low-Cu cultivation conditions. Contrary to the wild type, supplementing Cu-deficient media with exogenous sugar failed to stimulate growth of spl7-1. The spl7-1 mutant accumulated carbohydrates including the signaling sugar trehalose 6-phosphate, as well as ATP and NADH, also under normal Cu supply and without sugar supplementation. Late flowering of spl7 1 was in agreement with its attenuated sugar responsiveness. Functional TOR and SnRK1 kinase signaling in spl7-1 suggested against fundamental defects in these energy-signaling hubs. Sequencing of chromatin immunoprecipitates combined with transcriptomics identified direct targets of SPL7-mediated positive regulation, including FE SUPEROXIDE DISMUTASE1 (FSD1), COPPER-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1) and uncharacterized bHLH23 (CITF2), as well as an enriched upstream GTACTRC motif. In summary, transducing energy availability into growth and reproductive development requires the function of SPL7. Our results could help to increase crop yields, especially on Cu-deficient soils.


2021 ◽  
Author(s):  
López Granero M. Manuel Lopez-Granero ◽  
Antonio Arana ◽  
Jose Javier Regalado González ◽  
Carlos Lopez Encina

Abstract A mass micropropagation method was developed for Mammillaria vetula ssp. gracilis cv. Arizonica Snowcap, a cactus species with high ornamental value. A culture media based in MS medium (Murashige and Skoog, 1962) supplemented with 0.1 mg l− 1 NAA + 0.3 mg l− 1 KIN + 5.0 mg l− 1 GA3 + 30 g l− 1 sucrose (MSM-1), was developed specifically for the establishment and multiplication of Mammillaria vetula cv. Snowcap offshoots, let us to produce a proliferation rate of 34.9 ± 5.9 new offshoots per explant. The non-rooted offshoots were rooted in MSM-2, consisting in MS salts supplemented with 0.1 mg l− 1 NAA + 0.3 mg l− 1 KIN plus 5 mg l− 1 ancymidol and a lower dose (10 g l− 1) of sucrose, with a rooting rate of 100%. The rate of acclimatization of the rooted offshoots was 100%. The full process of micropropagation from aseptic establishment in vitro to the end of plant acclimation takes approximately between 5 and 6 months and the plant production can be maintained continuously during all year.


2021 ◽  
Author(s):  
Giulia Mengoli ◽  
Anna Agustí-Panareda ◽  
Souhail Boussetta ◽  
Sandy P. Harrison ◽  
Carlo Trotta ◽  
...  

<p>Vegetation and atmosphere are linked through the perpetual exchange of water, carbon and energy. An accurate representation of the processes involved in these exchanges is crucial in forecasting Earth system states. Although vegetation has become an undisputed key component in land-surface modelling (LSMs), the current generation of models differ in terms of how key processes are formulated. Plant processes react to environmental changes on multiple time scales. Here we differentiate a fast (minutes) and a slower (acclimated – weeks to months) response. Some current LSMs include plant acclimation, even though they require additional parameters to represent this response, but the majority of them represent only the fast response and assume that this also applies at longer time scales. Ignoring acclimation in this way could be the cause of inconsistent future projections. Our proposition is to include plant acclimation in a LSM schema, without having to include new plant-functional-type-dependent parameters. This is possible by using an alternative model development strategy based on eco-evolutionary theory, which explicitly predicts the acclimation of photosynthetic capacities and stomatal behaviour to environmental variations. So far, this theory has been tested only at weekly to monthly timescales. Here we develop and test an approach to apply an existing optimality-based model of gross primary production (GPP), the P model, at the sub-daily timestep necessary for use in an LSM, making an explicit differentiation between the fast and slow responses of photosynthesis and stomatal conductance. We test model performance in reproducing the diurnal cycle of GPP as recorded by flux tower measurements across different biomes, including boreal and tropical forests. The extended model requires only a few meteorological inputs, and a satellite-derived product for leaf area index or green vegetation cover. It is able to manage both timescales of acclimation without PFT-dependent photosynthetic parameters and has shown to operate with very good performance at all sites so far investigated. The model structure avoids the need to store past climate and vegetation states. These findings therefore suggest a simple way to include both instantaneous and acclimated responses within a LSM framework, and to do so in a robust way that does not require the specification of multiple parameters for different plant functional types.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
José J. Pueyo ◽  
Miguel A. Quiñones ◽  
Teodoro Coba de la Peña ◽  
Elena E. Fedorova ◽  
M. Mercedes Lucas

Nitrogen (N) and phosphorus (P) are two major plant nutrients, and their deficiencies often limit plant growth and crop yield. The uptakes of N or P affect each other, and consequently, understanding N–P interactions is fundamental. Their signaling mechanisms have been studied mostly separately, and integrating N–P interactive regulation is becoming the aim of some recent works. Lupins are singular plants, as, under N and P deficiencies, they are capable to develop new organs, the N2-fixing symbiotic nodules, and some species can also transform their root architecture to form cluster roots, hundreds of short rootlets that alter their metabolism to induce a high-affinity P transport system and enhance synthesis and secretion of organic acids, flavonoids, proteases, acid phosphatases, and proton efflux. These modifications lead to mobilization in the soil of, otherwise unavailable, P. White lupin (Lupinus albus) represents a model plant to study cluster roots and for understanding plant acclimation to nutrient deficiency. It tolerates simultaneous P and N deficiencies and also enhances uptake of additional nutrients. Here, we present the structural and functional modifications that occur in conditions of P and N deficiencies and lead to the organogenesis and altered metabolism of nodules and cluster roots. Some known N and P signaling mechanisms include different factors, including phytohormones and miRNAs. The combination of the individual N and P mechanisms uncovers interactive regulation pathways that concur in nodules and cluster roots. L. albus interlinks N and P recycling processes both in the plant itself and in nature.


2021 ◽  
Author(s):  
Damián Balfagón ◽  
Aurelio Gómez-Cadenas ◽  
José L. Rambla ◽  
Antonio Granell ◽  
Carlos de Ollas ◽  
...  

ABSTRACTPlants are frequently subjected to different combinations of abiotic stresses, such as high light intensity and elevated temperatures. These environmental conditions pose an important threat to agriculture production, affecting photosynthesis and decreasing yield. Metabolic responses of plants, such as alterations in carbohydrates and amino acid fluxes, play a key role in the successful acclimation of plants to different abiotic stresses, directing resources towards stress responses and suppressing growth. Here we show that the primary metabolic response of Arabidopsis thaliana plants to high light or heat stress is different than that of plants subjected to a combination of high light and heat stress. We further demonstrate that a combination of high light and heat stress results in a unique metabolic response that includes increased accumulation of sugars and amino acids, coupled with decreased levels of metabolites participating in the tricarboxylic acid (TCA) cycle. Among the amino acids exclusively accumulated during a combination of high light and heat stress, we identified the non-proteinogenic amino acid γ-aminobutyric acid (GABA). Analysis of different mutants deficient in GABA biosynthesis, in particular two independent alleles of glutamate decarboxylase 3 (gad3), reveal that GABA plays a key role in the acclimation of plants to a combination of high light and heat stress. Taken together, our findings identify a new role for GABA in regulating plant responses to stress combination.One sentence summaryThe non-proteinogenic amino acid γ-aminobutyric acid (GABA) is required for plant acclimation to a combination of high light and heat stress in Arabidopsis.


2021 ◽  
Vol 57 (2) ◽  
pp. 281-295 ◽  
Author(s):  
K. Jagiełło-Kubiec ◽  
K. Nowakowska ◽  
A. Ilczuk ◽  
A. J. Łukaszewska

AbstractNinebark is a very popular ornamental shrub. Micropropagation is an efficient method for mass production of uniform plant material. This study was designed to develop and optimize conditions at all phases of ninebark micropropagation. For the multiplication stage, the Murashige and Skoog (MS) medium at full concentration and pH 5.8 was chosen as the basal medium. Sorbitol proved a more effective carbohydrate source than fructose, with no adverse effects on shoot vitrification or the medium itself. The best shoot production, both in number and length, was on the medium enriched with 2 and 3 mg·L−1 zeatin. High numbers of shoots were also obtained in treatments with 1 mg·L−1 6-benzyladenine (BA) or 2 mg·L−1 meta-Topolin (mT) in the basal medium. BA was the most cost-effective cytokinin. There was a positive effect of the gibberellic acid on proliferation: the highest shoot number per explant was produced in the presence of 1 mg·L−1 GA3. No effect of the culture age (up to 20 subcultures) on the percentage of regenerating explants was evident, and the highest numbers of shoots were obtained between passages 10 and 17. For rooting, the MS medium at half strength was used. The best rooting was at 1 mg·L−1 IBA. Spraying the in vitro rooted cuttings with abscisic acid (ABA) favored plant acclimation to the ex vitro conditions. Exvitro rooting, including the treatments with IBA and ABA, shortened the production time by approximately one third.


2021 ◽  
Vol 28 ◽  
Author(s):  
Niaz Ahmad ◽  
Brent L. Nielsen

Abstract: Plastids in higher plants carry out specialized roles such as photosynthesis, nitrogen assimilation, biosynthesis of amino acids, fatty acids, isoprenoids, and various metabolites. Plastids arise from undifferentiated precursors known as proplastids, which are found in the root and shoot meristems. They are highly dynamic as they change their number, morphology, and physiology according to the tissue they are present. In addition to housing various metabolic activities, plastids also serve as a global sensor for both internal and external environmental cues including different stresses, and help plants to respond/adjust accordingly. They relay information to the nucleus, which then responds by changing the expression levels of specific genes. It has been shown that plants with impaired plastid functions exhibit abnormalities. One of the sources emanating these signals to the nucleus is plastid transcription. Normal plastid functioning is therefore critical for plant survival. Despite immense significance for plant acclimation, the plastid transcriptome is largely an unstudied research area. In this review, we discuss the importance of plastid transcriptomics for the acclimation of plants under changing environmental conditions and summarize the key literature published in this field.


Sign in / Sign up

Export Citation Format

Share Document