scholarly journals Norms of inclusions between some spaces of analytic functions

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Adrián Llinares

AbstractThe inclusions between the Besov spaces $$B^q$$ B q , the Bloch space $$\mathcal {B}$$ B and the standard weighted Bergman spaces $$A^p_{\alpha}$$ A α p are completely understood, but the norms of the corresponding inclusion operators are in general unknown. In this work, we compute or estimate asymptotically the norms of these inclusions.

2010 ◽  
Vol 62 (5) ◽  
pp. 961-974 ◽  
Author(s):  
Alexandru Aleman ◽  
Peter Duren ◽  
María J. Martín ◽  
Dragan Vukotić

AbstractFor some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.


1996 ◽  
Vol 54 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Karel Stroethoff

We shall give an elementary proof of a characterisation for the Bloch space due to Holland and Walsh, and obtain analogous characterisations for the little Bloch space and Besov spaces of analytic functions on the unit disk in the complex plane.


1998 ◽  
Vol 1998 (505) ◽  
pp. 23-44 ◽  
Author(s):  
Alexander Borichev

Abstract For a wide class of Banach spaces of analytic functions in the unit disc including all weighted Bergman spaces with radial weights and for weighted ℓAp spaces we construct z-invariant subspaces of index n, 2 ≦ n ≦ + ∞, without common zeros in the unit disc.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2545-2563
Author(s):  
Milos Arsenovic

We construct an atomic decomposition of the weighted Bergman spaces Ap?(D) (0 < p ? 1, ? > -1) of analytic functions on a bounded strictly pseudoconvex domain D in Cn with smooth boundary. The atoms used are atoms in the real-variable sense.


Author(s):  
Gerardo A. Chacón ◽  
Gerardo R. Chacón

Variable exponent spaces are a generalization of Lebesgue spaces in which the exponent is a measurable function. Most of the research done in this topic has been situated under the context of real functions. In this work, we present two examples of variable exponent spaces of analytic functions: variable exponent Hardy spaces and variable exponent Bergman spaces. We will introduce the spaces together with some basic properties and the main techniques used in the context. We will show that in both cases, the boundedness of the evaluation functionals plays a key role in the theory. We also present a section of possible directions of research in this topic.


2019 ◽  
Vol 108 (3) ◽  
pp. 289-320 ◽  
Author(s):  
W. ARENDT ◽  
I. CHALENDAR ◽  
M. KUMAR ◽  
S. SRIVASTAVA

We study the asymptotic behaviour of the powers of a composition operator on various Banach spaces of holomorphic functions on the disc, namely, standard weighted Bergman spaces (finite and infinite order), Bloch space, little Bloch space, Bloch-type space and Dirichlet space. Moreover, we give a complete characterization of those composition operators that are similar to an isometry on these various Banach spaces. We conclude by studying the asymptotic behaviour of semigroups of composition operators on these various Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document