bayesian inverse problems
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 43)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Tapio Helin ◽  
Remo Kretschmann

AbstractIn this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. 10.1007/s00211-020-01131-1), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.


2021 ◽  
Vol 38 (2) ◽  
pp. 025005
Author(s):  
Birzhan Ayanbayev ◽  
Ilja Klebanov ◽  
Han Cheng Lie ◽  
T J Sullivan

Abstract The Bayesian solution to a statistical inverse problem can be summarised by a mode of the posterior distribution, i.e. a maximum a posteriori (MAP) estimator. The MAP estimator essentially coincides with the (regularised) variational solution to the inverse problem, seen as minimisation of the Onsager–Machlup (OM) functional of the posterior measure. An open problem in the stability analysis of inverse problems is to establish a relationship between the convergence properties of solutions obtained by the variational approach and by the Bayesian approach. To address this problem, we propose a general convergence theory for modes that is based on the Γ-convergence of OM functionals, and apply this theory to Bayesian inverse problems with Gaussian and edge-preserving Besov priors. Part II of this paper considers more general prior distributions.


2021 ◽  
Vol 38 (2) ◽  
pp. 025006 ◽  
Author(s):  
Birzhan Ayanbayev ◽  
Ilja Klebanov ◽  
Han Cheng Lie ◽  
T J Sullivan

Abstract We derive Onsager–Machlup functionals for countable product measures on weighted ℓ p subspaces of the sequence space R N . Each measure in the product is a shifted and scaled copy of a reference probability measure on R that admits a sufficiently regular Lebesgue density. We study the equicoercivity and Γ-convergence of sequences of Onsager–Machlup functionals associated to convergent sequences of measures within this class. We use these results to establish analogous results for probability measures on separable Banach or Hilbert spaces, including Gaussian, Cauchy, and Besov measures with summability parameter 1 ⩽ p ⩽ 2. Together with part I of this paper, this provides a basis for analysis of the convergence of maximum a posteriori estimators in Bayesian inverse problems and most likely paths in transition path theory.


Author(s):  
Yuming Ba ◽  
Jana de Wiljes ◽  
Dean S. Oliver ◽  
Sebastian Reich

AbstractMinimization of a stochastic cost function is commonly used for approximate sampling in high-dimensional Bayesian inverse problems with Gaussian prior distributions and multimodal posterior distributions. The density of the samples generated by minimization is not the desired target density, unless the observation operator is linear, but the distribution of samples is useful as a proposal density for importance sampling or for Markov chain Monte Carlo methods. In this paper, we focus on applications to sampling from multimodal posterior distributions in high dimensions. We first show that sampling from multimodal distributions is improved by computing all critical points instead of only minimizers of the objective function. For applications to high-dimensional geoscience inverse problems, we demonstrate an efficient approximate weighting that uses a low-rank Gauss-Newton approximation of the determinant of the Jacobian. The method is applied to two toy problems with known posterior distributions and a Darcy flow problem with multiple modes in the posterior.


2021 ◽  
Author(s):  
John Harlim ◽  
Shixiao Willing Jiang ◽  
Hwanwoo Kim ◽  
Daniel Sanz-Alonso

Abstract This paper develops manifold learning techniques for the numerical solution of PDE-constrained Bayesian inverse problems on manifolds with boundaries. We introduce graphical Matérn-type Gaussian field priors that enable flexible modeling near the boundaries, representing boundary values by superposition of harmonic functions with appropriate Dirichlet boundary conditions. We also investigate the graph-based approximation of forward models from PDE parameters to observed quantities. In the construction of graph-based prior and forward models, we leverage the ghost point diffusion map algorithm to approximate second-order elliptic operators with classical boundary conditions. Numerical results validate our graph-based approach and demonstrate the need to design prior covariance models that account for boundary conditions.


2021 ◽  
Vol 31 (5) ◽  
Author(s):  
Jonas Latz ◽  
Juan P. Madrigal-Cianci ◽  
Fabio Nobile ◽  
Raúl Tempone

AbstractIn the current work we present two generalizations of the Parallel Tempering algorithm in the context of discrete-time Markov chain Monte Carlo methods for Bayesian inverse problems. These generalizations use state-dependent swapping rates, inspired by the so-called continuous time Infinite Swapping algorithm presented in Plattner et al. (J Chem Phys 135(13):134111, 2011). We analyze the reversibility and ergodicity properties of our generalized PT algorithms. Numerical results on sampling from different target distributions, show that the proposed methods significantly improve sampling efficiency over more traditional sampling algorithms such as Random Walk Metropolis, preconditioned Crank–Nicolson, and (standard) Parallel Tempering.


2021 ◽  
pp. 3-24
Author(s):  
Juan Chiachío-Ruano ◽  
Manuel Chiachío-Ruano ◽  
Shankar Sankararaman

2021 ◽  
Author(s):  
Juan Chiachío-Ruano ◽  
Manuel Chiachío-Ruano ◽  
Shankar Sankararaman

Sign in / Sign up

Export Citation Format

Share Document