numer math
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 15)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Tapio Helin ◽  
Remo Kretschmann

AbstractIn this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. 10.1007/s00211-020-01131-1), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.


Author(s):  
Mohammed Yusuf Waziri ◽  
Kabiru Ahmed ◽  
Abubakar Sani Halilu ◽  
Jamilu Sabiu

Notwithstanding its efficiency and nice attributes, most research on the iterative scheme by Hager and Zhang [Pac. J. Optim. 2(1) (2006) 35-58] are focused on unconstrained minimization problems. Inspired by this and recent works by Waziri et al. [Appl. Math. Comput. 361(2019) 645-660], Sabi’u et al. [Appl. Numer. Math. 153(2020) 217-233], and Sabi’u et al. [Int. J. Comput. Meth, doi:10.1142/S0219876220500437], this paper extends the Hager-Zhang (HZ) approach to nonlinear monotone systems with convex constraint. Two new HZ-type iterative methods are developed by combining the prominent projection method by Solodov and Svaiter [Springer, pp 355-369, 1998] with HZ-type search directions, which are obtained by developing two new parameter choices for the Hager-Zhang scheme. The first choice, is obtained by minimizing the condition number of a modified HZ direction matrix, while the second choice is realized using singular value analysis and minimizing the spectral condition number of the nonsingular HZ search direction matrix. Interesting properties of the schemes include solving non-smooth functions and generating descent directions. Using standard assumptions, the methods’ global convergence are obtained and numerical experiments with recent methods in the literature, indicate that the methods proposed are promising. The schemes effectiveness are further demonstrated by their applications to sparse signal and image reconstruction problems, where they outperform some recent schemes in the literature.


Author(s):  
Angkana Rüland ◽  
Antonio Tribuzio

AbstractIn this article we derive an (almost) optimal scaling law for a singular perturbation problem associated with the Tartar square. As in Winter (Eur J Appl Math 8(2):185–207, 1997), Chipot (Numer Math 83(3):325–352, 1999), our upper bound quantifies the well-known construction which is used in the literature to prove the flexibility of the Tartar square in the sense of the flexibility of approximate solutions to the differential inclusion. The main novelty of our article is the derivation of an (up to logarithmic powers matching) ansatz free lower bound which relies on a bootstrap argument in Fourier space and is related to a quantification of the interaction of a nonlinearity and a negative Sobolev space in the form of “a chain rule in a negative Sobolev space”. Both the lower and the upper bound arguments give evidence of the involved “infinite order of lamination”.


Author(s):  
Yuwen Li

For the planar Navier--Lam\'e equation in mixed form with symmetric stress tensors, we prove the uniform quasi-optimal convergence of an adaptive method based on the hybridized mixed finite element proposed in [Gong, Wu, and Xu: Numer.~Math., 141 (2019), pp.~569--604]. The main ingredients in the analysis consist of a discrete a posteriori upper bound and a quasi-orthogonality result for the stress field under the mixed boundary condition. Compared with existing adaptive methods, the proposed adaptive algorithm could be directly applied to the traction boundary condition and be easily implemented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Faris Alzahrani ◽  
Ahmed Salem ◽  
Moustafa El-Shahed

AbstractIn the present paper, we introduce sharp upper and lower bounds to the ratio of two q-gamma functions ${\Gamma }_{q}(x+1)/{\Gamma }_{q}(x+s)$ Γ q ( x + 1 ) / Γ q ( x + s ) for all real number s and $0< q\neq1$ 0 < q ≠ 1 in terms of the q-digamma function. Our results refine the results of Ismail and Muldoon (Internat. Ser. Numer. Math., vol. 119, pp. 309–323, 1994) and give the answer to the open problem posed by Alzer (Math. Nachr. 222(1):5–14, 2001). Also, for the classical gamma function, our results give a Kershaw inequality for all $0< s<1$ 0 < s < 1 when letting $q\to 1$ q → 1 and a new inequality for all $s>1$ s > 1 .


2021 ◽  
Vol 47 (2) ◽  
Author(s):  
A. Chernov ◽  
C. Marcati ◽  
L. Mascotto

AbstractWe analyse the p- and hp-versions of the virtual element method (VEM) for the Stokes problem on polygonal domains. The key tool in the analysis is the existence of a bijection between Poisson-like and Stokes-like VE spaces for the velocities. This allows us to re-interpret the standard VEM for Stokes as a VEM, where the test and trial discrete velocities are sought in Poisson-like VE spaces. The upside of this fact is that we inherit from Beirão da Veiga et al. (Numer. Math. 138(3), 581–613, 2018) an explicit analysis of best interpolation results in VE spaces, as well as stabilization estimates that are explicit in terms of the degree of accuracy p of the method. We prove exponential convergence of the hp-VEM for Stokes problems with regular right-hand sides. We corroborate the theoretical estimates with numerical tests for both the p- and hp-versions of the method.


2021 ◽  
Vol 40 (2) ◽  
Author(s):  
Mohsen Tourang ◽  
Mostafa Zangiabadi

AbstractThe improvements of Ky Fan theorem are given for tensors. First, based on Brauer-type eigenvalue inclusion sets, we obtain some new Ky Fan-type theorems for tensors. Second, by characterizing the ratio of the smallest and largest values of a Perron vector, we improve the existing results. Third, some new eigenvalue localization sets for tensors are given and proved to be tighter than those presented by Li and Ng (Numer Math 130(2):315–335, 2015) and Wang et al. (Linear Multilinear Algebra 68(9):1817–1834, 2020). Finally, numerical examples are given to validate the efficiency of our new bounds.


2021 ◽  
Vol 27 ◽  
pp. 28
Author(s):  
Matt Jacobs ◽  
Wonjun Lee ◽  
Flavien Léger

We present a method to efficiently compute Wasserstein gradient flows. Our approach is based on a generalization of the back-and-forth method (BFM) introduced in Jacobs and Léger [Numer. Math. 146 (2020) 513–544.]. to solve optimal transport problems. We evolve the gradient flow by solving the dual problem to the JKO scheme. In general, the dual problem is much better behaved than the primal problem. This allows us to efficiently run large scale gradient flows simulations for a large class of internal energies including singular and non-convex energies.


2020 ◽  
Vol 77 (3) ◽  
pp. 627-651
Author(s):  
Andrea Caliciotti ◽  
Giovanni Fasano ◽  
Florian Potra ◽  
Massimo Roma

AbstractIn this work, we deal with Truncated Newton methods for solving large scale (possibly nonconvex) unconstrained optimization problems. In particular, we consider the use of a modified Bunch and Kaufman factorization for solving the Newton equation, at each (outer) iteration of the method. The Bunch and Kaufman factorization of a tridiagonal matrix is an effective and stable matrix decomposition, which is well exploited in the widely adopted SYMMBK (Bunch and Kaufman in Math Comput 31:163–179, 1977; Chandra in Conjugate gradient methods for partial differential equations, vol 129, 1978; Conn et al. in Trust-region methods. MPS-SIAM series on optimization, Society for Industrial Mathematics, Philadelphia, 2000; HSL, A collection of Fortran codes for large scale scientific computation, http://www.hsl.rl.ac.uk/; Marcia in Appl Numer Math 58:449–458, 2008) routine. It can be used to provide conjugate directions, both in the case of $$1\times 1$$ 1 × 1 and $$2\times 2$$ 2 × 2 pivoting steps. The main drawback is that the resulting solution of Newton’s equation might not be gradient–related, in the case the objective function is nonconvex. Here we first focus on some theoretical properties, in order to ensure that at each iteration of the Truncated Newton method, the search direction obtained by using an adapted Bunch and Kaufman factorization is gradient–related. This allows to perform a standard Armijo-type linesearch procedure, using a bounded descent direction. Furthermore, the results of an extended numerical experience using large scale CUTEst problems is reported, showing the reliability and the efficiency of the proposed approach, both on convex and nonconvex problems.


Sign in / Sign up

Export Citation Format

Share Document