viral oncogenes
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 16)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Peter J. Mullen ◽  
Heather R. Christofk

Viruses are fundamental tools in cancer research. They were used to discover the first oncogenes in the 1970s, and they are now being modified for use as antitumor therapeutics. Key to both of these oncogenic and oncolytic properties is the ability of viruses to rewire host cell metabolism. In this review, we describe how viral oncogenes alter metabolism to increase the synthesis of macromolecules necessary for both viral replication and tumor growth. We then describe how understanding the specific metabolic requirements of virus-infected cells can help guide strategies to improve the efficacy of oncolytic viruses, and highlight immunometabolism and tumor microenvironment research that could also increase the therapeutic benefits of oncolytic viruses. We also describe how studies describing the therapeutic effects of dietary nutrient restriction in cancer can suggest new avenues for research into antiviral therapeutics. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
pp. 030098582110454
Author(s):  
Soma Ito ◽  
James K. Chambers ◽  
Ayumi Sumi ◽  
Nanako Yamashita-Kawanishi ◽  
Tetsuo Omachi ◽  
...  

Merkel cell carcinoma (MCC) is a cutaneous neuroendocrine tumor. We recently demonstrated that cats with MCC often have other proliferative cutaneous lesions, such as squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Based on this finding, we hypothesize that Felis catus papillomavirus (FcaPV) is involved in the development of MCC in cats, similar to SCC and BCC. To investigate this hypothesis, the presence of FcaPV nucleic acid and immunoreactivity for tumor suppressor proteins were examined in 21 feline MCC cases. Polymerase chain reaction using FcaPV type-specific primers detected FcaPV2 DNA in 20/21 samples of MCC. The complete FcaPV2 sequence was characterized in one case. In situ hybridization for FcaPV2 E7 revealed punctate nuclear signals within tumor cells in 19/21 MCC. Increased immunoreactivity for p16CDKN2A protein and decreased immunoreactivity for retinoblastoma (pRb) and p53 proteins were observed in 20/21 MCC. These results suggest that feline MCC cases are infected with FcaPV2 and the subsequent inhibition of pRb and p53 induced by integrated viral oncogenes is associated with feline MCC tumorigenesis, similar to other PV-induced proliferative cutaneous lesions. On the other hand, the single case of FcaPV2-negative MCC showed strong p53 immunoreactivity, suggesting mutations in p53 caused by cancer inducers other than FcaPV2 infection in this case. The present study suggests FcaPV2 as a cause of feline MCC.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4083
Author(s):  
Lorenzo Messa ◽  
Marta Celegato ◽  
Chiara Bertagnin ◽  
Beatrice Mercorelli ◽  
Gualtiero Alvisi ◽  
...  

Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein–protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1134
Author(s):  
Natasha T. Hill ◽  
David Kim ◽  
Klaus J. Busam ◽  
Emily Y. Chu ◽  
Clayton Green ◽  
...  

Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated Merkel cell polyomavirus DNA (virus-positive MCC, VP-MCC) and carry a low somatic mutation burden whereas virus-negative MCC (VN-MCC) possess numerous ultraviolet-signature mutations. In contrast to viral oncogenes and sequence mutations, little is known about genomic structural variants in MCC. To identify copy number variants in commonly altered genes, we analyzed genomic DNA from 31 tumor samples using the Nanostring nCounter copy number cancer panel. Unsupervised clustering revealed three tumor groups with distinct genomic structural variant signatures. The first cluster was characterized by multiple recurrent deletions in genes such as RB1 and WT1. The second cluster contained eight VP-MCC and displayed very few structural variations. The final cluster contained one VP-MCC and four VN-MCC with predominantly genomic amplifications in genes like MDM4, SKP2, and KIT and deletions in TP53. Overall, VN-MCC contained more structure variation than VP-MCC but did not cluster separately from VP-MCC. The observation that most MCC tumors demonstrate a deletion-dominated structural group signature, independent of virus status, suggests a shared pathophysiology among most VP-MCC and VN-MCC tumors.


2021 ◽  
Author(s):  
Ian J Groves ◽  
George Tang ◽  
Nicholas Coleman

AbstractHuman papillomavirus 16 (HPV16) is a high-risk alphapapillomavirus that is associated with cancers of mucosal epithelia. The virus genome exists in cells as an episome but can integrate and overexpress the E6 and E7 viral oncogenes. In related high-risk family members HPV18 and HPV31, host proteins including CTCF, an insulator, and SMC1A, a component of the cohesion complex, are known to interact with the viral genome and alter transcriptional activity, splicing patterns and episome amplification. However, the roles of these two proteins during HPV16 infection has not yet been fully examined. Here, we show during differentiation of the episomal HPV16-containing W12 cell line that CTCF association increases with the virus genome at the known E2 binding site, whilst additional CTCF binding now occurs at the putative L2 binding site, with SMC1A association occurring unchanged here. While expression of virus late transcripts (E4^L1, L2, L1) is stimulated, early transcript levels decrease by 48 hours, with the exception of the E6*IV spliced transcript. Conversely, in undifferentiated, monolayer W12 cells, CTCF knockdown increases the level of all early transcripts, whereas E6*IV level increases. Additionally, CTCF ablation as well as SMC1A knockdown results in decreases to HPV16 genome copy number. Taken together, this supports the model that while CTCF and SMC1A have a role in HPV16 genome maintenance, CTCF plays a greater part in regulating HPV16 oncogene splicing and expression during the natural lifecycle of the virus, and may be involved in a reduced risk of cancer development during episomal HPV16 infections.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tristan A. Scott ◽  
Kevin V. Morris

AbstractViral oncogenic transformation of healthy cells into a malignant state is a well-established phenomenon but took decades from the discovery of tumor-associated viruses to their accepted and established roles in oncogenesis. Viruses cause ~ 15% of know cancers and represents a significant global health burden. Beyond simply causing cellular transformation into a malignant form, a number of these cancers are augmented by a subset of viral factors that significantly enhance the tumor phenotype and, in some cases, are locked in a state of oncogenic addiction, and substantial research has elucidated the mechanisms in these cancers providing a rationale for targeted inactivation of the viral components as a treatment strategy. In many of these virus-associated cancers, the prognosis remains extremely poor, and novel drug approaches are urgently needed. Unlike non-specific small-molecule drug screens or the broad-acting toxic effects of chemo- and radiation therapy, the age of designer nucleases permits a rational approach to inactivating disease-causing targets, allowing for permanent inactivation of viral elements to inhibit tumorigenesis with growing evidence to support their efficacy in this role. Although many challenges remain for the clinical application of designer nucleases towards viral oncogenes; the uniqueness and clear molecular mechanism of these targets, combined with the distinct advantages of specific and permanent inactivation by nucleases, argues for their development as next-generation treatments for this aggressive group of cancers.


2020 ◽  
Vol 11 (3) ◽  
pp. 9939-9951

Carcinogenesis is a complex process that consists of multiple genetic events, leading to the activation of dominant-acting oncogenes and the cancellation of certain tumor suppressor genes functions. Previous studies on interactions between oncogenes and cells proved that viral or cellular oncogenes have a determinant role in malignant cells by supporting aberrant proliferation, epigenetic alterations, and reprogramming. After the cellular differentiation is complete, tumor suppressor genes are involved in cell regulation, by inhibiting mitogenic signaling pathways and cell cycle progression and by keeping the stability of the genome. Mutations that lead to loss of TSG function are commonly identified in various cancer types, such as lung, cervical, breast, pancreatic and colorectal cancer. The aim of this study is to specify the genetic factors involved in tumor and malignant processes and to compare the oncogene types in order to establish an evolutionary correlation between them. The analysis of cellular and viral oncogenes shows that their structure and functions are alike, which supports the idea that viral oncogenes originated from cell proto-oncogenes. This is an intensively studied field with high hopes of better understanding carcinogenesis and discovering novel therapies based on the genetic modifications that occur in malignant cells.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1996
Author(s):  
Edwige Voisset ◽  
Fabienne Brenet ◽  
Sophie Lopez ◽  
Paulo de Sepulveda

Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80–90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.


Sign in / Sign up

Export Citation Format

Share Document