Abstract
The number of applications prepared for use on mobile devices has increased rapidly with the widespread use of the Android OS. This has resulted in the undesired installation of Android apks that violate user privacy or malicious. The increasing similarity between Android malware and benign applications makes it difficult to distinguish them from each other and causes a situation of concern for users. In this study, FG-Droid, a machine-learning based classifier with an efficient working system, using the method of grouping the features obtained by static analysis, was proposed. It was created as a result of experiments with Machine learning (ML), DNN, RNN, LSTM and GRU based models using Drebin, Genome and Arslan datasets. Experimental results reveal that FG-Droid has achieved 97.7% AUC score with a vector includes only 11 static features, and ExtraTree algorithm. FG-Droid analyze the applications with using the least number of features compare to previous studies, and required the least processing time for training and prediction. As a result, it has been shown that Android malware can be detected in high accuracy rate with an effective feature set and there is no need to use a large number of features extracted with different techniques (static, dynamic or hybrid).