flow stagnation
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 11 (24) ◽  
pp. 11771
Author(s):  
Mok-Lyang Cho ◽  
Ji-Soo Ha ◽  
Tae-Kwon Kim

This study has comprehensively analyzed the ventilation system of an indoor coal storage shed using computational fluid dynamics (CFD). In addition, the effects of the plan to improve the ventilation system were investigated by synthesizing the results. First, the velocity of inlet wind entering through the natural ventilation system was measured. Then, the concentration of carbon monoxide inside the coal storage shed was measured at the spontaneous combustion of coal. The boundary conditions were set using the measurement results. The characteristics of carbon monoxide concentration, ventilation volume, and behavior of scattering dust were analyzed. According to the CFD analysis results, the upper recirculation strength increased as the flow rate of external air increased. The flow-stagnation area occurred on the center wall. In particular, the concentration of carbon monoxide was high in the flow-stagnation area. When the inflow velocity was 2.0 m/s, a risk of 30 ppm or more occurred in the area near the second-floor workspace and central retaining wall. When ventilation dropped sharply, coal dust emissions decreased to 14.5%. Thus, ventilation must be secured by installing a natural ventilation system, in case spontaneous ignition occurs in many cells or the ventilation sharply decreases. Finally, in order to improve the ventilation system, the effect on the additional installation of natural ventilation and the use of mobile blowers was analyzed. Finally, in order to improve the ventilation system, the effect on the additional installation of natural ventilation and the use of mobile blowers was analyzed. As a result of the analysis, we concluded that using a mobile blower is more effective than a method of additionally installing a natural ventilation device. Carbon monoxide may be locally diluted, and ventilation volume additionally secured.


Author(s):  
Vladimir N. Permyakov ◽  
Mikhail V. Omelchuk

The risk of accidents involving light hydrocarbons is caused by the physicochemical properties of the components, primarily propane and butane. The most catastrophic accidents involving these substances were on November 19, 1984, in the city of San Juan Ixhuatepec (Mexico) and on June 4, 1989, on the Asha – Ulu-Telyak section (USSR), in each of which more than 500 people died. The novelty of the study is determined by the requirement to ensure industrial and fire safety of storage facilities for light hydrocarbons by predicting probable zones of air flow stagnation. The authors calculated the formation of probable air stagnation zones for various space-planning solutions by using a three-dimensional modelling system and the finite volume method. The paper developed a methodology for assessing the safety of storage facilities for light hydrocarbons in emergency situations, which is based on the analysis of probable air stagnation zones by using three-dimensional modelling systems. The practical significance of the study is determined by the additional development of a parameter for assessing the safety state of a storage facility for light hydrocarbons (Ks) and a resulting parameter (Kr) for calculating the optimal location of structures and their structural changes. Integration of stagnation zone sizes into a single formula with the results of other safety calculations is an urgent scientific and applied problem.


2021 ◽  
Author(s):  
Kiran M. S. ◽  
Aakash Rajawat ◽  
Pritanshu Ranjan

Abstract The present study focuses on the design optimization of a 3D DAMWT (Diffuser Augmented Micro Wind Turbine geometry). DAMWTS are compact devices with a swept area of only few square meters and energy production capacity of a few kilowatts. Their small size makes it convenient for domestic power generation. The box-shaped shroud makes it possible to stack multiple DAMWTS in an array configuration, thereby multiplying power output. 3-D CFD simulations were carried out using the k-ω SST turbulence model to compare the performance characteristics of different turbine geometries with a square inlet. With a constant shroud diffuser angle of 12 degrees as obtained in a previous study, the shroud nozzle angle and curvature were varied to obtain the maximum velocity factor and minimize flow stagnation at the inlet. Best performance was obtained with a nozzle angle of approximately 27 degrees and semi-concave curvature, with a velocity factor of 1.2. Further increase in nozzle angle resulted in a decline in performance and an increased flow stagnation. To analyze the influence of stacking on flow characteristics, a computational study of two DAMWTS placed horizontally next to each other was carried out. An investigation of the effectiveness of Vortex Generators in inhibiting flow stagnation at the inlet was also conducted.


Mechanika ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 201-208
Author(s):  
Mustafa FEKHAR ◽  
Rachid SACI ◽  
Renée GATIGNOL

Thermal buoyancy, induced by injection or by differential heating of a tiny rod is explored to control breakdown in the core of a helical flow driven by the lid rotation of a cylinder. Three main parameters are required to characterize numerically the flow behavior; namely, the rotational Reynolds number Re, the cavity aspect ratio and the Richardson number Ri. Warm injection/rod, Ri > 0, is shown to prevent on-axis flow stagnation while breakdown enhancement is evidenced when Ri < 0. Results revealed that a bubble vortex evolves into a ring type structure which may remain robust, as observed in prior related experiments or, in contrast, disappear over a given range of parameters (Λh, Re, Ri > 0). Besides, the emergence of such a toroidal mode was not found to occur under thermal stratification induced by a differentially heated rod. Moreover, three state diagrams were established which provide detailed flow characteristics under the distinct and combined effects of buoyancy strength, viscous effects and cavity aspect ratio.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Seth Davidovits ◽  
E. Kroupp ◽  
E. Stambulchik ◽  
Y. Maron
Keyword(s):  

2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Yi Luo ◽  
Boyun Guo ◽  
Liehui Zhang ◽  
Dong Xiao

Abstract The hole cleaning issue in gas-lift drilling has been a concern and has not been previously investigated due to the difficulties of experimental studies and analytical modeling. The objective of this study is to deliver an assessment of hole cleaning capacity of drilling fluid in reverse circulation conditions for different bit designs. We use the finite element method (FEM) to target this issue and address a critical question in gas-lift drilling. The result of the theoretical investigation indicates that clean bottom hole can be achieved in gas-lift drilling through optimization of drill bit design to balance fluid energy (cleaning power) between tooth blades. Three drill bit designs were investigated in this study. The flow power balance between blades can be achieved with a 3-orifice bit design and a 2-orifice bit design, but there exist flow stagnation zones between these orifices, which are not desirable for bit tooth and borehole cleaning. The 1-orifice bit design with four cutter blades can eliminate flow stagnation zone and improve flow field to achieve a much better flow power balance between blades and thus bit tooth and borehole cleaning. Therefore, drill bits with one orifice are desirable for reverse circulation gas-drilling. This paper presents a novel technique of using FEM to evaluate bit hydraulics for hole cleaning in reverse drilling conditions. Future laboratory tests are desirable to obtain real data for further validating the model result.


Author(s):  
Leoni Rolfes ◽  
Monika Riek-Burchardt ◽  
Marc Pawlitzki ◽  
Jens Minnerup ◽  
Stefanie Bock ◽  
...  

Author(s):  
Benjamin Eichholz ◽  
Ruihang Zhang ◽  
Yan Zhang

Abstract Pulsatile flow over open cavity represents one type of physiological phenomenon related to a few common cardiovascular diseases, such as cerebral sidewall aneurysm and arrhythmia-induced thromboembolism in the left atrium appendage (LAA). In recent years, endovascular treatments using mesh-based implants have become increasingly popular. In this paper, we study the characteristics of pulsatile flow over a simplified sidewall cavity under two Reynolds/Womersley number conditions using Particle Image Velocimetry. The impacts of a regular mesh and a superhydrobobically-coated mesh on the cavity flow are investigated. Our results quantify the phase-to-phase changes of the flow fields and reveal the formation and the transport of the primary vortex over the ostium of the rectangular cavity. Results suggest the meshes diverted the main flow away from the cavity and prohibited the development of the primary vortex. A penetrated jet flow was formed near the front side of the cavity due to the presence of the mesh. The superhydrophobic mesh dramatically reduced the kinetic energy of the penetrated jet into the cavity. It indicates the mesh flow diversion is effective because of the destruction of the shear-induced vortex dynamics that causes flow stagnation on the rear cavity wall. Our results also indicate the superhydrophobic coating is potentially beneficial in terms of reducing the hemodynamic loading inside the cavity.


2020 ◽  
Vol 112 ◽  
pp. 106129
Author(s):  
Ana R. Calapez ◽  
Carmen L. Elias ◽  
Artur Alves ◽  
Salomé F.P. Almeida ◽  
António G. Brito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document