scholarly journals The Effects of Freshwater Clam (Corbicula fluminea) Extract on Activated Hepatic Stellate Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shou-Lun Lee ◽  
Wei-Hsiang Hsu ◽  
Chia-Ming Tu ◽  
Wen-Han Wang ◽  
Cheng-Yao Yang ◽  
...  

Background. The extract of freshwater clams has been used to protect the body against liver diseases in traditional folk medicine. This study aims at investigating the effects of freshwater clam extract on activated hepatic stellate cells (aHSCs), which are critical contributors to liver fibrosis. Methods. The aHSCs used in this study were derived from hepatic stellate cells that were isolated and purified from the livers of male Wistar rats and then transformed into the activated phenotype by culturing on uncoated plastic dishes. Freshwater clam extract (CE) was collected after the outflow from the live freshwater clams in a water bath at 100°C for 60 min. The effects of CE on aHSCs were analyzed by MTT assay, flow cytometry, Oil Red O (ORO) staining, western blot, and real-time RT-PCR. Results. The results indicated that CE suppressed the proliferation of aHSCs through G0/G1 cell cycle arrest by downregulating cyclin D1 and upregulating p27. The expression levels of a-SMA, collagen I, TGF-β, and TNF-α were inhibited in the CE-treated aHSCs. In addition, the CE treatment increased the lipid contents in aHSCs by promoting PPARγ expression. Furthermore, CE modulated the expression of ECM-related genes, i.e., by upregulating MMP-9 and downregulating TIMP-II. Conclusions. These data revealed that CE could induce the deactivation of aHSCs. We therefore suggest that CE has potential as an adjuvant therapeutic agent against hepatic fibrosis.

2008 ◽  
Vol 315 (1-2) ◽  
pp. 1-7 ◽  
Author(s):  
Izabel C. Souza ◽  
Leo Anderson M. Martins ◽  
Barbara P. Coelho ◽  
Ivana Grivicich ◽  
Regina M. Guaragna ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Hu ◽  
Nian Fu ◽  
Li Xian Chen ◽  
Jian Hua Xiao ◽  
Xue Feng Yang

Cyclooxygenase-2 (COX-2) is an important rate-limiting enzyme in the synthesis of prostaglandins (PGs), which can be upregulated by various stimuli. COX-2 has been shown to be involved in the occurrence and development of hepatic fibrosis by regulating the proliferation and apoptosis of hepatic stellate cells (HSCs) in previous studies. The aims of the study are to study the mechanism of how COX-2 regulates the proliferation and apoptosis of HSCs and to provide new targets for the prevention and treatment of hepatic fibrosis. A short hairpin RNA targeting COX-2 was constructed, and the changes in proliferation and apoptosis of liver tissue cells and HSCs were observed, respectively. COX-2-shRNA-1 significantly suppressed the proliferation of HSCs in vivo. Moreover, knockdown of COX-2 significantly suppressed cell proliferation and accelerated cell cycle arrest and apoptosis in vitro. Among those differential genes related to cell proliferation and apoptosis, CDC27 and Sh3kbp1 were upregulated, but Plcd4 was suppressed. Mechanistically, the influence of COX-2 on HSCs partly depends on upregulating CDC27. Our results demonstrated that COX-2 regulates the proliferation and apoptosis of activated hepatic stellate cells through the CDC27 pathway. This study contributes to our understanding of the effect of COX-2 for the treatment of hepatic fibrosis.


2012 ◽  
Vol 50 (01) ◽  
Author(s):  
B Wang ◽  
R Bröring ◽  
CI Real ◽  
M Trippler ◽  
G Gerken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document