filler network
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
pp. 095400832110464
Author(s):  
Yunsheng Da ◽  
Jing He ◽  
Qiqi Qu ◽  
Menghan Zhu ◽  
Hua Wang ◽  
...  

Studies have shown that the construction of a three-dimensional interconnected filler network is an effective method to improve the thermal conductivity of the through-plane under a lower filler load. However, huge challenges still exist in building a long-range layered filler network and reducing the thermal resistance resulting from contact between fillers and matrix. In this work, boron nitride nanosheets (BNNSs) were proposed to be connected with modified cellulose nanofibers (CNFs) to obtain a long-range layered structure filler skeleton by bidirectional freezing orientation. Then epoxy resin was dipped under vacuum condition to prepare composite with thermal conductivity up to 1.43 W/mK in through-plane when filler content is 4.3 vol%, and the composite had low thermal expansion coefficient of 64.1 ppm/°C and excellent volume resistivity up to 3.7 × 1012 Ω cm at the same time.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2534
Author(s):  
Sriharish Malebennur Nagaraja ◽  
Sven Henning ◽  
Sybill Ilisch ◽  
Mario Beiner

A comparative study focusing on the visco–elastic properties of two series of carbon black filled composites with natural rubber (NR) and its blends with butadiene rubber (NR-BR) as matrices is reported. Strain sweeps at different temperatures are performed. Filler network-related contributions to reinforcement (ΔG′) are quantified by the classical Kraus equation while a modified Kraus equation is used to quantify different contributions to dissipation (ΔGD″, ΔGF″). Results indicate that the filler network is visco-elastic in nature and that it is causing a major part of the composite dissipation at small and intermediate strain amplitudes. The temperature dependence of filler network-related reinforcement and dissipation contributions is found to depend significantly on the rubber matrix composition. We propose that this is due to differences in the chemical composition of the glassy rubber bridges connecting filler particles since the filler network topology is seemingly not significantly influenced by the rubber matrix for a given filler content. The underlying physical picture explains effects in both dissipation and reinforcement. It predicts that these glassy rubber bridges will soften sequentially at temperatures much higher than the bulk Tg of the corresponding rubber. This is hypothetically due to rubber–filler interactions at interfaces resulting in an increased packing density in the glassy rubber related to the reduction of free volume. From a general perspective, this study provides deeper insights towards the molecular origin of reinforcement and dissipation in rubber composites.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


Author(s):  
Bingcheng Wang ◽  
Qun Cao ◽  
Wei Shao ◽  
Zheng Cui

The graphene has been extensively applied in composite materials due to its high thermal conductivity, and the multi-layered graphene has great potentials in the construction of the continuous filler network...


2021 ◽  
Vol 202 ◽  
pp. 108561
Author(s):  
Yuanyuan Wang ◽  
Bin Wang ◽  
Canchen Sun ◽  
Jianfeng Wang ◽  
Yanxia Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document