regular semigroup
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Panuwat Luangchaisri ◽  
Thawhat Changphas

Let S be a regular semigroup. A pair (e,f) of idempotents of S is said to be a skew pair of idempotents if fe is idempotent, but ef is not. T. S. Blyth and M. H. Almeida (T. S. Blyth and M. H. Almeida, skew pair of idempotents in transformation semigroups, Acta Math. Sin. (English Series), 22 (2006), 1705–1714) gave a characterization of four types of skew pairs—those that are strong, left regular, right regular, and discrete—existing in a full transformation semigroup T(X). In this paper, we do in this line for partial transformation semigroups.


2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Najmah Istikaanah ◽  
Ari Wardayani ◽  
Renny Renny ◽  
Ambar Sari Nurahmadhani ◽  
Agustini Tripena Br. Sb.

This article discusses some properties of regular semigroups. These properties are especially concerned with the relation of the regular semigroups  to ideals, subsemigroups, groups, idempoten semigroups and invers semigroups. In addition,  this paper also discusses the Cartesian product of two regular semigroups.   Keywords:ideal, idempoten semigroup, inverse semigroup, regular semigroup, subsemigroup.


Author(s):  
Niovi Kehayopulu

This is about the paper “Bi-interior ideals of semigroups” by M. Murali Krishna Rao in Discuss. Math. Gen. Algebra Appl. 38 (2018) 69–78. According to Theorem 3.11 (also Theorem 3.3(8)) of the paper, the intersection of a bi-interior ideal [Formula: see text] of a semigroup [Formula: see text] and a subsemigroup [Formula: see text] of [Formula: see text] is a bi-interior ideal of [Formula: see text]. Regarding to Theorem 3.6, every bi-interior ideal of a regular semigroup is an ideal of [Formula: see text]. We give an example that the above two results are not true for semigroups. According to the same paper, if [Formula: see text] is a regular semigroup then, for every bi-interior ideal [Formula: see text], every ideal [Formula: see text] and every left ideal [Formula: see text] of [Formula: see text], we have [Formula: see text]. The proof is wrong, we provide the corrected proof. In most of the results of the paper the assumption of unity is not necessary. Care should be taken about the proofs in the paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Barış Albayrak ◽  
Didem Yeşil ◽  
Didem Karalarlioğlu Camci

In this study, we define new semigroup structures using the set S S = a ∈ S | a S a = 0 which is called the source of semiprimeness for a semigroup S with zero element. S S − idempotent semigroup, S S − regular semigroup, S S − reduced semigroup, and S S − nonzero divisor semigroup which are generalizations of idempotent, regular, reduced, and nonzero divisor semigroups in semigroup theory are investigated, and their basic properties are determined. In addition, we adapt some well-known results in semigroup theory to these new semigroups.


Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


2021 ◽  
Vol 11 (12) ◽  
pp. 2076-2086
Author(s):  
志荣 苏

2021 ◽  
Vol 19 (1) ◽  
pp. 803-832
Author(s):  
Junying Guo ◽  
Xiaojiang Guo

Abstract Abundant semigroups originate from p.p. rings and are generalizations of regular semigroups. The main aim of this paper is to study the primeness and the primitivity of abundant semigroup algebras. We introduce and study D ∗ {{\mathcal{D}}}^{\ast } -graphs and Fountain matrices of a semigroup. Based on D ∗ {{\mathcal{D}}}^{\ast } -graphs and Fountain matrices, we determine when a contracted semigroup algebra of a primitive abundant semigroup is prime (respectively, semiprime, semiprimitive, or primitive). It is well known that for any algebra A {\mathcal{A}} with unity, A {\mathcal{A}} is primitive (prime) if and only if so is M n ( A ) {M}_{n}\left({\mathcal{A}}) . Our results can be viewed as some kind of generalizations of such a known result. In addition, it is proved that any contracted semigroup algebra of a locally ample semigroup whose set of idempotents is locally finite (respectively, locally pseudofinite and satisfying the regularity condition) is isomorphic to some contracted semigroup algebra of primitive abundant semigroups. Moreover, we obtain sufficient and necessary conditions for these classes of contracted semigroup algebras to be prime (respectively, semiprime, semiprimitive, or primitive). Finally, the structure of simple contracted semigroup algebras of idempotent-connected abundant semigroups is established. Our results enrich and extend the related results on regular semigroup algebras.


2020 ◽  
Vol 18 (1) ◽  
pp. 333-352
Author(s):  
Junying Guo ◽  
Xiaojiang Guo

Abstract It is proved that for an IC abundant semigroup (a primitive abundant semigroup; a primitively semisimple semigroup) S and a field K, if K 0[S] is right (left) self-injective, then S is a finite regular semigroup. This extends and enriches the related results of Okniński on self-injective algebras of regular semigroups, and affirmatively answers Okniński’s problem: does that a semigroup algebra K[S] is a right (respectively, left) self-injective imply that S is finite? (Semigroup Algebras, Marcel Dekker, 1990), for IC abundant semigroups (primitively semisimple semigroups; primitive abundant semigroups). Moreover, we determine the structure of K 0[S] being right (left) self-injective when K 0[S] has a unity. As their applications, we determine some sufficient and necessary conditions for the algebra of an IC abundant semigroup (a primitively semisimple semigroup; a primitive abundant semigroup) over a field to be semisimple.


2020 ◽  
Vol 13 (2) ◽  
pp. 346-350
Author(s):  
Niovi Kehayopulu

It is shown that an hypersemigroup (S, ◦) is regular if and only if the set of all quasi-ideals of S with the operation “∗” is a von Neumann regular semigroup. It is both regular and intra-regular if and only if the set of all quasi-ideals of S with the operation “∗” is a band.


Sign in / Sign up

Export Citation Format

Share Document