nonzero divisor
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Barış Albayrak ◽  
Didem Yeşil ◽  
Didem Karalarlioğlu Camci

In this study, we define new semigroup structures using the set S S = a ∈ S | a S a = 0 which is called the source of semiprimeness for a semigroup S with zero element. S S − idempotent semigroup, S S − regular semigroup, S S − reduced semigroup, and S S − nonzero divisor semigroup which are generalizations of idempotent, regular, reduced, and nonzero divisor semigroups in semigroup theory are investigated, and their basic properties are determined. In addition, we adapt some well-known results in semigroup theory to these new semigroups.


2017 ◽  
Vol 232 ◽  
pp. 55-75 ◽  
Author(s):  
LINQUAN MA ◽  
PHAM HUNG QUY

Let $(R,\mathfrak{m})$ be a Noetherian local ring of characteristic $p>0$. We introduce and study $F$-full and $F$-anti-nilpotent singularities, both are defined in terms of the Frobenius actions on the local cohomology modules of $R$ supported at the maximal ideal. We prove that if $R/(x)$ is $F$-full or $F$-anti-nilpotent for a nonzero divisor $x\in R$, then so is $R$. We use these results to obtain new cases on the deformation of $F$-injectivity.


2016 ◽  
Vol 222 (1) ◽  
pp. 74-99 ◽  
Author(s):  
MANUEL BLICKLE ◽  
AXEL STÄBLER

In analogy with the complex analytic case, Mustaţă constructed (a family of) Bernstein–Sato polynomials for the structure sheaf${\mathcal{O}}_{X}$and a hypersurface$(f=0)$in$X$, where$X$is a regular variety over an$F$-finite field of positive characteristic (see Mustaţă,Bernstein–Sato polynomials in positive characteristic, J. Algebra321(1) (2009), 128–151). He shows that the suitably interpreted zeros of his Bernstein–Sato polynomials correspond to the$F$-jumping numbers of the test ideal filtration${\it\tau}(X,f^{t})$. In the present paper we generalize Mustaţă’s construction replacing${\mathcal{O}}_{X}$by an arbitrary$F$-regular Cartier module$M$on$X$and show an analogous correspondence of the zeros of our Bernstein–Sato polynomials with the jumping numbers of the associated filtration of test modules${\it\tau}(M,f^{t})$provided that$f$is a nonzero divisor on$M$.


2015 ◽  
Vol 219 ◽  
pp. 87-111 ◽  
Author(s):  
S. P. Dutta

AbstractWe address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ringRof mixed characteristicp> 0, wherepis a nonzero divisor, ifIis an ideal of finite projective dimension overRandp𝜖Iorpis a nonzero divisor onR/I, then every minimal generator ofIis a nonzero divisor. Hence, ifPis a prime ideal of finite projective dimension in a local ringR, then every minimal generator ofPis a nonzero divisor inR.


2015 ◽  
Vol 219 ◽  
pp. 87-111
Author(s):  
S. P. Dutta

AbstractWe address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ring R of mixed characteristic p > 0, where p is a nonzero divisor, if I is an ideal of finite projective dimension over R and p 𝜖 I or p is a nonzero divisor on R/I, then every minimal generator of I is a nonzero divisor. Hence, if P is a prime ideal of finite projective dimension in a local ring R, then every minimal generator of P is a nonzero divisor in R.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350006 ◽  
Author(s):  
CHAREF BEDDANI

The main purpose of this paper is to prove that if I is an ideal containing a nonzero divisor of a Noetherian ring R, then I is normal one-fibered if and only if, I satisfies the condition (C2) introduced by Hübl and Swanson.


2012 ◽  
Vol 88 (2) ◽  
pp. 177-189 ◽  
Author(s):  
M. AFKHAMI ◽  
M. KARIMI ◽  
K. KHASHYARMANESH

AbstractLet$R$be a commutative ring. The regular digraph of ideals of$R$, denoted by$\Gamma (R)$, is a digraph whose vertex set is the set of all nontrivial ideals of$R$and, for every two distinct vertices$I$and$J$, there is an arc from$I$to$J$whenever$I$contains a nonzero divisor on$J$. In this paper, we study the connectedness of$\Gamma (R)$. We also completely characterise the diameter of this graph and determine the number of edges in$\Gamma (R)$, whenever$R$is a finite direct product of fields. Among other things, we prove that$R$has a finite number of ideals if and only if$\mathrm {N}_{\Gamma (R)}(I)$is finite, for all vertices$I$in$\Gamma (R)$, where$\mathrm {N}_{\Gamma (R)}(I)$is the set of all adjacent vertices to$I$in$\Gamma (R)$.


Author(s):  
T. Cheatham ◽  
E. Enochs

AbstractAn associative ring R with identity is said to be c-commutative for c ∈ R if a, b ∈ R and ab = c implies ba = c. Taft has shown that if R is c-commutative where c is a central nonzero divisor]can be omitted. We show that in R[x] is h(x)-commutative for any h(x) ∈ R [x] then so is R with any finite number of (commuting) indeterminates adjoined. Examples adjoined. Examples are given to show that R [[x]] need not be c-commutative even if R[x] is, Finally, examples are given to answer Taft's question for the special case of a zero-commutative ring.


Sign in / Sign up

Export Citation Format

Share Document