critical supersaturation
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 8)

H-INDEX

23
(FIVE YEARS 2)

Abstract This paper examines the impact of cloud-base turbulence on activation of cloud condensation nuclei (CCN). Following our previous studies, we contrast activation within a non-turbulent adiabatic parcel and an adiabatic parcel filled with turbulence. The latter is simulated by applying a forced implicit large eddy simulation within a triply periodic computational domain of 643 m3. We consider two monodisperse CCN. Small CCN have a dry radius of 0.01 micron and a corresponding activation (critical) radius and critical supersaturation of 0.6 micron and 1.3%, respectively. Large CCN have a dry radius of 0.2 micron and feature activation radius of 5.4 micron and critical supersaturation 0.15 %. CCN are assumed in 200 cm−3 concentration in all cases. Mean cloud base updraft velocities of 0.33, 1, and 3 m s−1 are considered. In the non-turbulent parcel, all CCN are activated and lead to a monodisperse droplet size distribution above the cloud base, with practically the same droplet size in all simulations. In contrast, turbulence can lead to activation of only a fraction of all CCN with a non-zero spectral width above the cloud base, of the order of 1 micron, especially in the case of small CCN and weak mean cloud base ascent. We compare our results to studies of the turbulent single-size CCN activation in the Pi chamber. Sensitivity simulations that apply a smaller turbulence intensity, smaller computational domain, and modified initial conditions document the impact of specific modeling assumptions. The simulations call for a more realistic high-resolution modeling of turbulent cloud base activation.


2021 ◽  
pp. 222-234
Author(s):  
David Rickard

Framboid microcrystals, which are intrinsically similar in size and habit within any individual framboid, must have all nucleated and grown at the same time. The formation of many thousands of equidimensional and equimorphic microcrystals in framboids is the fundamental evidence for burst nucleation. This is conventionally described by the LaMer model, which is characterized by (1) a lag phase before nucleation becomes significant; (2) burst nucleation where the rate of nucleation increases exponentially and may be completed in seconds; and (3) a short growth phase where nucleation becomes again insignificant. The growth phase is limited by the diffusion of Fe and S in stagnant, diffusion limited environments. By contrast, individual pyrite crystals evidence isolated nucleation and unlimited growth in advecting systems. The reaction with surface =FeS provided by sulfidized iron oxyhydroxides may a major route for producing individual pyrite crystals, rather than framboids, especially in sediments. Framboid formation by the nucleation of pyrite in solution can be described by classical nucleation theory (CNT), which leads to results consistent with observed critical supersaturation ranges, critical nucleus radius, and surface energies.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 642
Author(s):  
Dmitry A. Vorontsov ◽  
Vadim V. Grebenev ◽  
Natalia A. Vasilyeva ◽  
Elena B. Rudneva ◽  
Vera L. Manomenova ◽  
...  

The normal growth rate, the steepness of polygonized growth hillocks and the velocity of step movement on the (110) faces of potassium cobalt–nickel sulphate crystals in aqueous solutions with cobalt to nickel ratios of 1:1 and 1:2 were investigated as a function of supersaturation by the geometry of growth hillocks using laser interferometry. It was found that the morphologies of growth hillocks on the (110) faces of the crystals grown from 1:1 and 1:2 solutions are similar and that the growth hillocks are formed by multiple screw dislocation sources. The experimental data on the growth kinetics of the (110) faces of the crystals were analyzed by using the Burton–Cabrera–Frank theory. It was found that (1) there is a critical supersaturation for the growth of the (110) faces, and the value of this supersaturation in the 1:2 solution is higher than that in the 1:1 solution, and (2) the kinetic coefficient of the step movement in the sectors of growth hillocks is highly anisotropic, and the values of this coefficient are larger in 1:2 solution than in 1:1 solution. These results are discussed in the presented work.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rui Zhang ◽  
Xiaodong Si ◽  
Lingling Zhao ◽  
Linjun Yang ◽  
Hao Wu

Based on the fundamentals of heterogeneous nucleation, a method to eliminate sulfuric acid aerosol associated with water recycling in the process of limestone-gypsum desulfurization was investigated. The supersaturated environment was achieved in a heat exchanger. Numerical calculation shows that high temperature drop and relative humidity are conducive to the formation of supersaturated vapor environment, and vapor heterogeneous condensation can improve the removal efficiency of sulfuric acid aerosol. Experimental results indicate that the critical supersaturation degree of the sulfuric acid aerosol is found in inverse proportion to their sizes and the removal efficiency of sulfuric acid aerosol could be increased by about 20%. The theoretical and the actual condensable water mass values have been also studied in detail. The mass of condensed water produced by the experiment system is 0.0440 kg/(Nm3·h) as the temperature drop is 5°С, and the most suitable temperature drop is about 1∼2°С for water scarce area. High temperature and humidity reveal a huge potential to recycling water.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 390
Author(s):  
Matthew A. McDonald ◽  
Andreas S. Bommarius ◽  
Martha A. Grover ◽  
Ronald W. Rousseau

Prediction and control of crystal size distributions, a prerequisite for production of consistent crystalline material in the pharmaceutical industry, requires knowledge of potential non-idealities of crystal growth. Ampicillin is one such medicine consumed in crystal form (ampicillin trihydrate). Typically it is assumed that all crystals of the same chemical and geometric type grow at the same rate, however a distribution of growth rates is often observed experimentally. In this study, ampicillin produced enzymatically is crystallized and a distribution of growth rates is observed as individual crystals are monitored by microscopy. Most studies of growth rate dispersion use complex flow apparatuses to maintain a constant supersaturation or imprecise measurements of size distributions to reconstruct growth rate dispersions. In this study, the controllable enzyme reaction enables the same information to be gathered from fewer, less complicated experiments. The growth rates of individual ampicillin trihydrate crystals were found to be normally distributed, with each crystal having an intrinsic growth rate that is constant in time. Differences in the individual crystals, such as different number and arrangement of dislocations and surface morphology, best explain the observed growth rates. There is a critical supersaturation below which growth is not observed, thought to be caused by reactants adsorbing to the crystal surface and pinning advancing growth steps. The distribution of critical supersaturation also suggests that individual crystals’ surface morphologies cause a distribution of growth rates.


2019 ◽  
Vol 19 (7) ◽  
pp. 4323-4344 ◽  
Author(s):  
Marie Mazoyer ◽  
Frédéric Burnet ◽  
Cyrielle Denjean ◽  
Gregory C. Roberts ◽  
Martial Haeffelin ◽  
...  

Abstract. Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010–2013 at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) observatory in a suburb of Paris. In order to document their properties, in situ microphysical measurements collected during 23 fog events induced by both radiative cooling and stratus lowering are examined here. They reveal large variability in number, concentration and size of both aerosol background before the fog onset and fog droplets according to the different cases. The objective of this paper is to evaluate the impact of aerosol particles on the fog microphysics. To derive an accurate estimation of the actual activated fog droplet number concentration Nact, we determine the hygroscopicity parameter κ, the dry and the wet critical diameter and the critical supersaturation for each case by using an iterative procedure based on the κ-Köhler theory that combines cloud condensation nuclei (CCN), dry particle and droplet size distribution measurements. Our study reveals low values of the derived critical supersaturation occurring in fog with a median of 0.043 %. Consequently, the median dry and wet activation diameters are 0.39 and 3.79 µm, respectively, leading to a minor fraction of the aerosol population activated into droplets. The corresponding Nact values are low, with median concentrations of 53.5 and 111 cm−3 within the 75th percentile. The activated fraction of aerosols exhibits remarkably low correlation with κ values, which reflects the chemical composition of the aerosols. On the contrary, the activated fraction exhibits a strong correlation with the inferred critical diameter throughout the field campaigns. This suggests that the variability in the activated fraction is mostly driven by particle size, while variations in aerosol composition are of secondary importance. Moreover, our analysis suggests that the supersaturation reached in fog could be lowered by the aerosol number concentration, which could contribute to the sink term of water vapor during the radiative cooling. Although radiative fogs are usually associated with higher aerosol loading than stratus-lowering events, our analysis also reveals that the activated fraction at the beginning of the event is similar for both types of fog. However, the evolution of the droplet concentration during the fog life cycle shows significant differences between both types of fog. This work demonstrates that an accurate calculation of supersaturation is required to provide a realistic representation of fog microphysical properties in numerical models.


2019 ◽  
Vol 19 (5) ◽  
pp. 3325-3339 ◽  
Author(s):  
Ankit Tandon ◽  
Nicholas E. Rothfuss ◽  
Markus D. Petters

Abstract. Particles composed of organic and inorganic components can assume core-shell morphologies. The kinetic limitation of water uptake due to the presence of a hydrophobic viscous outer shell may increase the critical supersaturation required to activate such particles into cloud droplets. Here we test this hypothesis through laboratory experiments. Results show that the viscosity of polyethylene particles is 5×106 Pa s at 60 ∘C. Extrapolation of temperature dependent viscosity measurements suggests that the particles are glassy at room temperature. Cloud condensation nuclei (CCN) activity measurements demonstrate that pure polyethylene particles are CCN inactive at diameters less than 741 nm and 2.5 % water supersaturation. Thus, polyethylene is used as proxy for hydrophobic glassy organic material. Ammonium sulfate is used as proxy for hygroscopic CCN active inorganic material. Mixed particles were generated using coagulation of oppositely charged particles; charge-neutral polyethylene–ammonium sulfate dimer particles were then isolated for online observation. Morphology of these dimer particles was varied by heating, such that liquefied polyethylene partially or completely engulfed the ammonium sulfate. Critical supersaturation was measured as a function of dry particle volume, particle morphology, and organic volume fraction. The data show that kinetic limitations do not change the critical supersaturation of 50 nm ammonium sulfate cores coated with polyethylene and polyethylene volume fractions up to 97 %. Based on these results, and a synthesis of literature data, it is suggested that mass transfer limitations by glassy organic shells are unlikely to affect cloud droplet activation near laboratory temperatures.


2018 ◽  
Author(s):  
Marie Mazoyer ◽  
Frederic Burnet ◽  
Greg Roberts ◽  
Martial Haeffelin ◽  
Jean-Charles Dupont ◽  
...  

Abstract. Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010–2013 at the SIRTA observatory in the suburb of Paris. In order to document their properties, in situ microphysical measurements collected during 23 fog events are examined here. They reveal large variability in number, concentration and size of both aerosol background before the fog onset and fog droplets according to the different cases. The objective of this paper is to evaluate the impact of aerosol particles on the fog microphysics. To derive an accurate estimation of the actual activated fog droplet number concentration Nact we determine the hygro-scopicity parameter κ, the dry and the wet critical diameter and the critical supersaturation for each case by using an iterative procedure based on the κ-Köhler theory that combines cloud condensation nuclei (CCN), dry particle and droplet size distribution measurements. Resulting values of κ = 0.17 ± 0.05 were found typical of continental aerosols. Our study reveals low values of the derived critical supersaturation with a median of 0.043 % and large values for both wet and dry activation diameters. Consequently, the corresponding Nact values are low with median concentrations of 53.5 cm−3 and 111 cm−3 within the percentile 75th. No detectable trend between the concentration of aerosol particles with diameter > 200 nm and Nact was observed. In contrast the CCN data at 0.1 % supersaturation exhibits a strong correlation with these aerosol concentrations. We therefore conclude that the actual supersaturations reached during these fog episodes are too low and no simultaneous increase of aerosols > 200 nm and droplet concentrations can be observed. Moreover our analysis suggests that a high aerosol loading limits the supersaturation values. It is also found that the activated fraction mainly depends on the aerosol size while the hygroscopicity appears to be of a secondary importance. Although radiative fogs are usually associated with higher aerosol loading rather than to stratus lowering events, our analysis reveals that the activated particle concentrations at the beginning of the event are similar for both types of fog. However the evolution of the droplet concentration during the fog life cycle shows significant differences between both types of fog.


2018 ◽  
Author(s):  
Nonne L. Prisle ◽  
Bjarke Molgaard

Abstract. Cloud condensation nuclei (CCN) activity of aerosol particles comprising surface active Nordic Aquatic Fulvic Acid (NAFA) and NaCl was modeled with four different approaches to account for NAFA bulk-to-surface partitioning and the combined influence of NAFA and NaCl on surface tension and water activity of activating droplets. Calculations were made for particles with dry diameters of 30–230 nm and compositions covering the full range of relative NAFA and NaCl mixing ratios. Continuous ternary parametrizations of aqueous surface tension and water activity with respect to independently varying NAFA and NaCl mass concentrations were developed from previous measurements on macroscopic bulk solutions and implemented to a Köhler model framework. This enabled comprehensive thermodynamic predictions of cloud droplet activation, including equilibrium surface partitioning, for particles comprising chemically unresolved organic NAFA mixtures. NAFA here serves as a model for surface active atmospheric humic-like substances (HULIS) and for chemically complex organic aerosol in general. Surfactant effects are gauged via predictions of a suite of properties for activating droplets, including critical supersaturation and droplet size, bulk phase composition, surface tension, Kelvin effect, and water activity. Assuming macroscopic solution properties for activating droplets leads to gross overestimations of reported experimental CCN activation, mainly by overestimating surface tension reduction from NAFA solute in droplets. Failing to account for bulk-to-surface partitioning of NAFA introduces severe biases in evaluated droplet bulk and surface composition and critical size, which here specifically affect cloud activation thermodynamics, but more generally could also impact heterogeneous chemistry on droplet surfaces. Model frameworks based on either including surface partitioning and/or neglecting surface tension reduction give similar results for both critical supersaturation and droplet properties and reproduce reported experimental CCN activity well. These perhaps counterintuitive results reflect how the bulk phase is nearly depleted in surface active organic from surface partitioning in submicron droplets with large surface area for a given bulk volume. As a result, NAFA has very little impact on surface tension and water activity at the point of droplet activation. In other words, the predicted surfactant strength of NAFA is significantly lower in sub-micron activating droplets than in macroscopic aqueous solutions of the same overall composition. These results show similar effects of chemically complex surfactants as have previously been seen only for simple surfactants with well-defined molecular properties and add to the growing appreciation of the complex role of surface activity in cloud droplet activation.


Sign in / Sign up

Export Citation Format

Share Document