Density functional theory simulations were employed to explore the geometric, electronic and optical properties of two croconate dye molecules adsorbed on TiO2 brookite nanocluster. The calculations were based on determination of conjugate length, absorption spectra and light
harvesting efficiency. The absorption energies, absorption spectra and electronic states of the dye-TiO2 complex were calculated using TD/DFT. The analysis of the excited state properties shows that CR1 and CR2 showed excitation around 580 nm and 680 nm respectively with a corresponding
maximum light harvesting efficiency of 66% and 33.9% for CR1 and CR2 respectively. The absorption wavelength support that the croconate dye molecules can improve the efficiency of DSSCs as they can absorb the near infrared photons which increases the absorption range of DSSCs on the solar
spectrum. The adsorption energies of CR1 and CR2 on TiO2 brookite are 3.93 eV and 5.53 eV respectively, suggesting a stable grafting of the dyes onto the surface of the semiconductor. The shifting of the absorption wavelength towards the infrared region upon adsorption gives probability
of more electron transport into the large band gap of TiO2.