semantic tableau
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Dan E Willard

Abstract Our previous research showed that the semantic tableau deductive methodology of Fitting and Smullyan permits boundary-case exceptions to the second incompleteness theorem, if multiplication is viewed as a 3-way relation (rather than as a total function). It is known that tableau methodologies prove a schema of theorems verifying all instances of the law of the excluded middle. But if one promotes this schema of theorems into formalized logical axioms, then the meaning of the pronoun of ‘I’, used by our self-referencing engine, changes quite sharply. Our partial evasions of the second incompleteness theorem shall then come to a complete halt.


Author(s):  
Yotaro Nakayama ◽  
Seiki Akama ◽  
Tetsuya Murai ◽  
◽  
◽  
...  

Rough set theory is studied to manage uncertain and inconsistent information. Because Pawlak’s decision logic for rough sets is based on the classical two-valued logic, it is inconvenient for handling inconsistent information. We propose a bilattice logic as the deduction basis for the decision logic of rough sets to address inconsistent and ambiguous information. To enhance the decision logic to bilattice semantics, we introduce Variable Precision Rough Set (VPRS). As a deductive basis for bilattice decision logic, we define a consequence relation for Belnap’s four-valued semantics and provide a bilattice semantic tableau TB4 for a deduction system. We demonstrate the soundness and completeness of TB4 and enhance it with weak negation.


Sign in / Sign up

Export Citation Format

Share Document