dehydroabietic acid
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 48)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
Juan Yu ◽  
Chaoqun Xu ◽  
Chuanwei Lu ◽  
Qian Liu ◽  
Jifu Wang ◽  
...  

Preparation and application of sustainable polymers derived from renewable resources are of great significance. The aim of this study is to synthesize a kind of sustainable polymeric micelles from rosin and vegetable oils via atom transfer radical polymerization (ATRP) and to investigate the doxorubicin delivery properties of these micelles. Dehydroabietic acid–based poly lauryl methacrylate (DA-PLMA) with narrow PDI of 1.13 was prepared in a well-controlled process using rosin as an ATRP initiator. Thereafter, carboxylic groups were introduced to form poly methacrylic acid (PMAA) moieties in DA-PLMA polymer via acid hydrolysis. The resulted DA-PLMA-PMAA could self-assemble in water to form pH-dependent polymeric micelles with a diameter of ∼65 nm and PDI as low as 0.105. Owing to the existence of rosin, DA-PLMA-PMAA micelles also showed self-fluorescence properties. In addition, Dox-loaded micelles were prepared in aqueous solution with the drug-loading capacity as high as 16.0% and showed sustained-release characteristics. These results demonstrate great promise for designing polymeric micellar from rosin and vegetable oils.


Planta ◽  
2021 ◽  
Vol 254 (5) ◽  
Author(s):  
Jiadian Wang ◽  
Ping Su ◽  
Linhui Gao ◽  
Yifeng Zhang ◽  
Jian Wang ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2106
Author(s):  
Stefania Sut ◽  
Valeria Baldan ◽  
Marta Faggian ◽  
Irene Ferrarese ◽  
Erica Maccari ◽  
...  

In this work, the sawmill waste from Picea abies debarking was considered as source of valuable phytoconstituents. The extraction was performed using different ethanol/water mixtures, and characterization was obtained by LC-MSn. This latter revealed flavonoid glycosides, lignans, and procyanidins. Extraction with organic solvents (dichloromethane and methanol) and chromatographic separations of the obtained extracts by silica column followed by semi-preparative HPLC led to the isolation of polyphenols and terpenoids such as 21α-metoxy-serrat-14-en-3-one, 21α-hydroxy-serrat-14-en-3-one, pinoresinol, dehydroabietic acid, 15-hydroxy-dehydroabietic acid, 7-oxo-dehydroabietic acid, pimaric acid, 9β-pimara-7,15-dien-19-ol, 13-epi-manoyl oxide, taxifolin-3’-O-glucopyranoside, trans-astringin, and piceasides. Piceaside V and 9β-pimara-7-keto-19β-olide, two novel compounds identified for the first time in P. abies bark, were isolated, and their structures were elucidated using 1D and 2D NMR and MS techniques. The polyphenolic composition of the methanolic portion was also investigated using LC-MSn, and the piceaside content was estimated. To assess the antioxidant activity of main constituents, semi-preparative HPLC was performed on the methanolic extract, and the obtained fractions were assayed by using the DPPH test. Overall, this work shows the potential usefulness of P. abies bark as a source of valuable phytochemicals.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 825
Author(s):  
Iris Neto ◽  
Eva María Domínguez-Martín ◽  
Epole Ntungwe ◽  
Catarina P. Reis ◽  
Milica Pesic ◽  
...  

The antimicrobial activity of dehydroabietic acid (DHA) for its use as an antibiofilm agent was tested in this work. DHA was assayed against a collection of Gram-positive, Gram-negative sensitive and resistant bacteria and yeasts through the minimum inhibitory concentration (MIC), MIC with Bioburden challenge, minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), MBIC with Bioburden challenge and growth curve studies. Toxicological studies (Artemia salina, sulforhodamine B (SRB) assay) were done to assess if the compound had antimicrobial and not cytotoxic properties. Furthermore, microencapsulation and stability studies were carried out to evaluate the chemical behavior and stability of DHA. On MIC results, Gram-positive bacteria Staphylococcus aureus ATCC 1228 and Mycobacterium smegmatis ATCC 607 presented a high efficiency (7.81 µg/mL), while on Gram-negative bacteria the highest MIC value of 125 µg/mL was obtained by all Klebsiella pneumoniae strains and Escherichia coli isolate strain HSM 303. Bioburden challenge showed that MIC, MBIC and percentage biofilm inhibition (BI) values suffered alterations, therefore, having higher concentrations. MBIC values demonstrated that DHA has a higher efficiency against S. aureus ATCC 43866 with a percentage of BI of 75.13 ± 0.82% at 0.49 µg/mL. Growth curve kinetic profiles of DHA against S. aureus ATCC 25923 were observed to be bacteriostatic. DHA-alginate beads had a average size of 2.37 ± 0.20 and 2.31 ± 0.17 × 103 µm2 with an encapsulation efficiency (EE%) around 99.49 ± 0.05%, a protection percentage (PP%) of 60.00 ± 0.05% in the gastric environment and a protection efficiency (PE%) around 88.12 ± 0.05% against UV light. In toxicological studies DHA has shown IC50 of 19.59 ± 7.40 µg/mL and a LC50 of 21.71 ± 2.18%. The obtained results indicate that DHA is a promising antimicrobial candidate against a wide range of bacteria and biofilm formation that must be further explored.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1047
Author(s):  
Won-Jin Kim ◽  
Woong Kim ◽  
Jang-Mi Bae ◽  
Jungsoo Gim ◽  
Seok-Jun Kim

Gastric cancer is a malignant tumor with a high incidence and mortality rate worldwide. Nevertheless, anticancer drugs that can be used for gastric cancer treatment are limited. Therefore, it is important to develop targeted anticancer drugs for the treatment of gastric cancer. Dehydroabietic acid (DAA) is a diterpene found in tree pine. Previous studies have demonstrated that DAA inhibits gastric cancer cell proliferation by inducing apoptosis. However, we did not know how DAA inhibits the proliferation of gastric cancer cells through apoptosis. In this study, we attempted to identify the genes that induce cell cycle arrest and cell death, as well as those which are altered by DAA treatment. DAA-regulated genes were screened using RNA-Seq and differentially expressed genes (DEGs) analysis in AGS cells. RNA-Seq analysis revealed that the expression of survivin, an apoptosis inhibitor, was significantly reduced by DAA treatment. We also confirmed that DAA decreased survivin expression by RT-PCR and Western blotting analysis. In addition, the ability of DAA to inhibit survivin was compared to that of YM-155, a known survivin inhibitor. DAA was found to have a stronger inhibitory effect in comparison with YM-155. DAA also caused an increase in cleaved caspase-3, an apoptosis-activating protein. In conclusion, DAA is a potential anticancer agent for gastric cancer that inhibits survivin expression.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 595
Author(s):  
Ya-Qiong Wu ◽  
Tong-Li Wang ◽  
Yue Xin ◽  
Shu-Jing Huang ◽  
Gui-Bin Wang ◽  
...  

Ginkgo biloba L. has attracted much attention due to its medicinal properties, particularly those of its terpenoid and flavonoid contents. However, the content and utilization efficiency of terpenoids remain low. The enzyme 3-hydroxy-3-methylglutaryl CoA synthase (HMGS) is a major rate-limiting factor, and RNA-seq has revealed that the mRNA expression of this enzyme is differentially expressed during terpenoid biosynthesis. Here, we investigated the function of the GbHMGS1 gene and its overexpression in Populus. We compared the metabolite contents of nontransgenic (CK) Populus with those of transgenic Populus lines through metabolomics analysis. Our results indicate that the GbHMGS1 protein is localized in the cytoplasm. Significant differences in chemical characteristics were found between the transgenic and CK plants, and a total of 31 differentially expressed metabolites were upregulated in the transgenic plants. We also found higher contents of lanosterol (triterpenoid), dehydroabietic acid (diterpenoid), and phytol (diterpenoid) in the transgenic Populus plants than in their CK counterparts. We thus speculate that GbHMGS1 might regulate plant-related product formation and increase metabolite contents. This study revealed the molecular mechanism governing metabolite synthesis and suggested that one triterpenoid and two diterpenoids with significant upregulation can be used as markers for the breeding of plants with specific terpenoid metabolism-related characteristics.


2021 ◽  
Vol 1229 ◽  
pp. 129793
Author(s):  
Xu-Min Cai ◽  
Tianqi Mu ◽  
Yuting Lin ◽  
Xuedan Zhang ◽  
Zhenguo Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document