struvite precipitation
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 70)

H-INDEX

41
(FIVE YEARS 7)

2022 ◽  
Vol 45 ◽  
pp. 102508
Author(s):  
Denis Manuel Rodrigues ◽  
Rita do Amaral Fragoso ◽  
Ana Paula Carvalho ◽  
Thomas Hein ◽  
António Guerreiro de Brito

Author(s):  
Işık Kabdaşlı ◽  
Sezen Kuşçuoğlu ◽  
Olcay Tünay ◽  
Alessio Siciliano

The impact of nutrients on the environment, particularly on water bodies, has led to extensive studies for nutrient control. Within this context, studies have been focused on source separation of human urine from domestic wastewater to recover nutrients. Potassium is one of the most important components of human urine. However, data on potassium removal or recovery are quite limited except for some indirect information through use of zeolites for mostly ammonia removal. Potassium struvite or K-struvite (MgKPO4·6H2O) is a sparingly soluble salt belonging to struvite and has the potential of being used as a means of potassium and phosphate recovery from segregated human urine. This study aimed to assess the potential of K-struvite precipitation for control and recovery of nutrients. Within this context, K-struvite precipitation experiments were performed on both synthetically prepared samples and synthetic human urine solution to determine effect of operation parameters i.e. pH, stoichiometry, and temperature on potassium recovery performance. Results indicated that process performance as well as type of solid phases co-precipitated with K-struvite were closely related to initial potassium concentration, pH and reaction stoichiometry. At pH 10, the potassium recovery efficiency was maximized up to 87% by application of 100% excess dose of Mg and P for both synthetic samples and synthetic human urine solution. On the other hand, application of excess dose of K did not provide any improvement in K recovery efficiency. The effect of temperature on solubility of K-struvite was insignificant at the temperature of 24-90°C. Solid phase analyses confirmed that K-struvite was co-precipitated with either Mg3(PO4)2, MgNaPO4·7H2O, or MgHPO4·7H2O depending on pH and stoichiometry instead of a pure compound.


Author(s):  
Qiqi Zhang ◽  
Tobias Hogen ◽  
Kuangxin Zhou ◽  
Stefan Berendts ◽  
Kang Hu ◽  
...  

Abstract The phosphate rock mineral is the main source of P-fertilizer production. It is estimated to become depleted in next century. Thus, the recovery of phosphorus from waste streams have attracted great interest. The cellulosic ethanol production is seen more and more important in future. During the production of cellulosic ethanol, the phosphorus element is released from lignocellulosic biomasses and end up dissolved as phosphate ions in the stillage stream. In this study, the struvite (MgNH4PO4 · 6 H2O) recovery from the concentrated cellulosic ethanol stillage (ES) was conducted under room conditions with an initial pH at 7–9. The effect of Mg2+, PO43−, NH4+ and Ca2+ during struvite precipitation testes are investigated. The optimized pH value for struvite recovery is estimated at 8.5, by which 85% of PO43− and 46% of Mg2+ are removed from the liquid stream. The mass fraction of struvite in recovered crystal sample reaches 82 wt.%. The economic evaluation of struvite recovery from ES was also investigated. This work proves that the struvite is potentially to be recovered with high purity from the concentrated cellulosic ethanol stillage.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5822
Author(s):  
Claver Numviyimana ◽  
Jolanta Warchoł ◽  
Bartosz Ligas ◽  
Katarzyna Chojnacka

Struvite precipitation from Wastewater involves an excess of ammonium to create a supersaturated initial solution. The remaining fraction can be a threat to the environment. This work combined struvite precipitation and ammonium sorption using natural zeolite to decrease the ammonium level in the effluent. Two approaches of estimation of feed sample doses were used. One consisted of gradient experiments for ammonium precipitation to the asymptotic level and was combined with clinoptilolite to lower the ammonium level in the effluent. This approach used doses of 0.05:1.51:0.61:1 of Ca:Mg:NH4+:PO43− mole ratios, respectively. In contrast, three level design with narrowed NH4+:PO43− range reached 0.25:1.51:0.8:1 for Ca:Mg:NH4+:PO43− mole ratios. The addition of zeolite decreased effluent ammonium concentration. In both ways, the P and N recoveries were higher than 94% and 72%, respectively. The complexity of the precipitation mixture decreased the ammonium sorption capacity (Qe) of clinoptilolite from Qe of 0.52 to 0.10 meq∙g−1 in single and complex solutions, respectively. Thermodynamically, the addition of 1.5 % of clinoptilolite changed the struvite precipitation spontaneity from ∆G of −5.87 to −5.42 kJ·mol−1 and from 9.66 to 9.56 kJ·mol−1 for gradient and three level experimental procedures, respectively. Thus, clinoptilolite demonstrated a positive effect on the struvite precipitation process and its environmental impact.


2021 ◽  
Vol 13 (19) ◽  
pp. 10730
Author(s):  
Carolina González-Morales ◽  
Belén Fernández ◽  
Francisco Molina ◽  
Darío Naranjo-Fernández ◽  
Adriana Matamoros-Veloza ◽  
...  

The precipitation of struvite (MgNH4PO4.6H2O) from wastewater streams simultaneosuly recovers nitrogen (N) and phosphorus (P) for reuse as fertilisers. Struvite crystallisation is controlled by pH, saturation index, temperature and other ions in the solution (e.g., Ca2+, Mg2+ and CO32−). This work studies the effect of pH and temperature on phosphorus and nitrogen removal via struvite precipitation and the quality of the resulting precipitate product (i.e., crystal size, morphology and purity). Struvite was precipitated in batch reactors from the supernatant produced during anaerobic sludge dewatering at a wastewater treatment works, under controlled pH (8, 9 and 10) and temperature (25, 33 and 40 °C) conditions. The optimal P removal as struvite, reduction of the co-precipitation with Ca and the increase in particle size of the struvite precipitates were determined. The results showed that temperatures of 33 °C and 40 °C are not recommended for struvite precipitation—i.e., at 33 °C the purity is lower, and at 40 °C the ammonia losses are induced by volatilisation. At all pH-tests, the P removal efficiency was >93%, but the highest phosphate content and purity as struvite were obtained at a pH of 9.0. The optimum pH and temperature for the formation of large crystals (84 µm) and a high purity (>70%) of the struvite precipitates were 9 and 25 °C, respectively.


Sign in / Sign up

Export Citation Format

Share Document