ammonia removal
Recently Published Documents


TOTAL DOCUMENTS

735
(FIVE YEARS 162)

H-INDEX

49
(FIVE YEARS 7)

Author(s):  
Sergio Godoy-Olmos ◽  
Ignacio Jauralde ◽  
Raquel Monge-Ortiz ◽  
María C. Milián-Sorribes ◽  
Miguel Jover-Cerdá ◽  
...  

AbstractGilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose biofilters’ performance was analyzed. Fish were fed with three different diets (a control diet, a fishmeal-based diet (FM), and a plant meal-based diet (VM)) and with three different feeding strategies (manual feeding to apparent satiation, automatic feeding with restricted ration, and auto-demand feeding). For every combination of diet and feeding strategy, the mean oxygen consumption, ammonia excretion, and ammonia removal rate were determined. Fish fed with the VM diet consumed the most oxygen (20.06 ± 1.80 gO2 consumed kg−1 day−1). There were significant differences in ammonia excretion depending on the protein content and protein efficiency of the diet, as well as depending on feeding strategy, which in turn affected ammonia removal rates. Fish fed by auto-demand feeders led to the highest mean ammonia removal rate (0.10 gN-TAN removed m−2 biofiltration area day−1), while not leading to peaks of high ammonia concentration in water, which preserve fish welfare and growth.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012039
Author(s):  
Cheng Chen

Abstract Membrane aerated biofilm reactor, as a biological wastewater treatment technology, has been nearly mature on a commercial scale. It uses bubble-free aeration to provide oxygen for biological nitrification and wastewater degradation. A novel oxygen-permeable hollow fiber membrane (Zeelung cord) specifically designed for use in a membrane aerated biofilm reactors (MABR). These fibers are organized into bundles, which are wrapped around the reinforcing core to increase strength. This permeable membrane allows oxygen to diffuse into the attached biofilm, which directly leads to the biological oxidation of pollutants in the wastewater. This study aimed to determine the nitrification and oxygen transfer capacity of Zeelung fibers used in the MABR system. The effects of various C/N ratios (in the range of 1.0 to 3.0) on the membrane modules were studied using three laboratory-scale reactors over the course of 165 days. In this test, the average removal efficiency of COD can reach 74% under selected conditions, up to 90%. Meanwhile, the average nitrification rate is 3.9 g/d/m2, the average ammonia removal rate is 90%, and the maximum value can reach 99%. In addition, the oxygen transfer rate of the fiber in the liquid phase was 19.65 g/d/m2. The experiment also indicated that the nitrification rate is directly proportional to the transfer flux of oxygen and is related to the content of dissolved oxygen in the water. The nitrification rate can be controlled by controlling the concentration of dissolved oxygen in water, thus affecting the removal rate of ammonia nitrogen.


Author(s):  
Sayeh Yasamani Masouleh ◽  
Mehrdad Mozaffarian ◽  
Bahram Dabir ◽  
Saeed Fallah Ramezani

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8599
Author(s):  
Robert Wejkowski ◽  
Sylwester Kalisz ◽  
Przemysław Garbacz ◽  
Izabella Maj

The application of secondary NOx control methods in medium to low-capacity furnaces is a relatively new topic on the energy market and thus requires further research. In this paper, the results of full-scale research of SNCR and hybrid SNCR + SCR methods applied into a 29 MWth solid fuel fired stoker boiler is presented. The tests were performed for a full range of boiler loads, from 33% (12 MWth) to 103% (30 MWth) of nominal load. A novel SNCR + SCR hybrid process was demonstrated based on an enhanced in-furnace SNCR installation coupled with TiO2-WO3-V2O5 catalyst, which provides extra NOx reduction and works as an excess NH3 “catcher” as well. The performance of a brand-new catalyst was evaluated in comparison to a recovered one. The emission of NOx was reduced below 180 mg NOx/Nm3 at 6% O2, with ammonia slip in flue gas below 10 mg/Nm3. Special attention was paid to the analysis of ammonia slip in combustion products: flue gas and fly ash. An innovative and cost-effective method of ammonia removal from fly ash was presented and tested. The main idea of this method is fly ash recirculation onto the grate. As a result, ammonia content in fly ash was reduced to a level below 6.1 mg/kg.


Author(s):  
Rachel D. Stewart ◽  
Rania Bashar ◽  
Carly Amstadt ◽  
Gustavo A. Uribe-Santos ◽  
Katherine D. McMahon ◽  
...  

Abstract Sensor driven aeration control strategies have recently been developed as a means to efficiently carry out biological nutrient removal (BNR) and reduce aeration costs in wastewater treatment plants. Under load-based aeration control, often implemented as ammonia-based aeration control (ABAC), airflow is regulated to meet desired effluent standards without specifically setting dissolved oxygen (DO) targets. Another approach to reduce aeration requirements is to constantly maintain low DO conditions and allow the microbial community to adapt to the low-DO environment. In this study, we compared the performance of two pilot-scale BNR treatment trains that simultaneously used ABAC and low-DO operation to evaluate the combination of these two strategies. One pilot plant was operated with continuous ABAC while the other one used intermittent ABAC. Both processes achieved greater than 90% total Kjehldal nitrogen (TKN) removal, 60% total nitrogen removal, and nearly 90% total phosphorus removal. Increasing the solids retention time (SRT) during the period of cold (∼12 °C) water temperatures helped maintain ammonia removal performance under low-DO conditions. However, both processes experienced poor solids settling characteristics during winter. While settling was recovered under warmer temperatures, improving settling qual ity remains a challenge under low-DO operation.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3584
Author(s):  
Yiming Xue ◽  
Li Li ◽  
Shuanglin Dong ◽  
Qinfeng Gao ◽  
Xiangli Tian

This study investigated the effect of different carbon sources on water quality, ammonia removal pathways, the bacterial community, and the production of Litopenaeus vannamei in outdoor culture tanks. Three systems were established: a clear water system (CW) and biofloc technology (BFT) systems with added molasses (M-BF) or poly (3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) (P-BF). The average pH, total alkalinity, total organic carbon, biofloc volume, chlorophyll a, nitrite, nitrate, total nitrogen, and nitrification rate were significantly different among the treatments. Microbial composition varied and different dominant taxa were identified in the treatments by linear discriminant analysis effect size. Redundancy analysis indicated that the water quality parameters affected the distribution of the microbial community. Moreover, the genus Leucothrix was closely related to the M-BF treatment. Chemoheterotrophy and aerobic chemoheterotrophy were the most abundant functions in all treatments. A comparison of functions using BugBase indicated that the relative abundance of several functions such as biofilm formation, stress tolerance and functions related to anaerobic processes increased in the M-BF treatment. The specific growth rate, growth rate, and survival rate of shrimp were significantly higher in the P-BF system than in the CW system and the feed conversion ratio in the BFT treatments was significantly lower than that in the CW system. Overall, adding carbon sources affected water quality, microbial community, and shrimp performance. The results show that PHBV is a good alternative to carbon sources.


Author(s):  
Işık Kabdaşlı ◽  
Sezen Kuşçuoğlu ◽  
Olcay Tünay ◽  
Alessio Siciliano

The impact of nutrients on the environment, particularly on water bodies, has led to extensive studies for nutrient control. Within this context, studies have been focused on source separation of human urine from domestic wastewater to recover nutrients. Potassium is one of the most important components of human urine. However, data on potassium removal or recovery are quite limited except for some indirect information through use of zeolites for mostly ammonia removal. Potassium struvite or K-struvite (MgKPO4·6H2O) is a sparingly soluble salt belonging to struvite and has the potential of being used as a means of potassium and phosphate recovery from segregated human urine. This study aimed to assess the potential of K-struvite precipitation for control and recovery of nutrients. Within this context, K-struvite precipitation experiments were performed on both synthetically prepared samples and synthetic human urine solution to determine effect of operation parameters i.e. pH, stoichiometry, and temperature on potassium recovery performance. Results indicated that process performance as well as type of solid phases co-precipitated with K-struvite were closely related to initial potassium concentration, pH and reaction stoichiometry. At pH 10, the potassium recovery efficiency was maximized up to 87% by application of 100% excess dose of Mg and P for both synthetic samples and synthetic human urine solution. On the other hand, application of excess dose of K did not provide any improvement in K recovery efficiency. The effect of temperature on solubility of K-struvite was insignificant at the temperature of 24-90°C. Solid phase analyses confirmed that K-struvite was co-precipitated with either Mg3(PO4)2, MgNaPO4·7H2O, or MgHPO4·7H2O depending on pH and stoichiometry instead of a pure compound.


Author(s):  
Jiachao Yao ◽  
Yu Mei ◽  
Zeyu Wang ◽  
Jun Chen ◽  
Dzmitry Hrynsphan ◽  
...  

Abstract In this work, a novel Ni/ZnO-MnO2 electrode was fabricated by utilizing spent zinc-manganese batteries and then was applied to the electrochemical treatment of ammonia-containing wastewater. The obtained Ni/ZnO-MnO2 electrode was characterized by scanning electron microscopy, X-ray diffraction, and linear scanning voltammetry, suggesting that the fabricated electrode had a flower-like structure and showed high oxygen evolution potential and electrochemical activity. The electrochemical performance of the ZnO-MnO2 electrode in regard to ammonia removal and product selectivity was then investigated with different operating factors (i.e., electrolyte concentration, initial pH value, current density, and Cl− concentration), and the results indicated that the ammonia removal efficiency could reach 100% with a N2 selectivity of 91.8% under optimal conditions. Additionally, the mechanism of ammonia oxidation was proposed by cyclic voltammetry tests and active radical measurements, showing that ammonia was mainly oxidized via direct electron transfer, hydroxyl radicals, and active chlorine. Finally, the ZnO-MnO2 electrode was equipped for the treatment of actual pharmaceutical wastewater, results for which showed that ammonia could be completely removed with a current efficiency of 26.2% and an energy consumption of 52.7 kWh/kg N. Thus, the ZnO-MnO2 electrode prepared by recycling spent batteries is a promising anode for wastewater treatment.


2021 ◽  
Vol 896 (1) ◽  
pp. 012047
Author(s):  
N Harihastuti ◽  
S Djayanti ◽  
I R J Sari

Abstract A pilot project research has been conducted to eliminate odor pollution from the feed mill industry. The feed industry in Indonesia has grown, especially in poultry feed production produced in modern feed mills equipped with pelleting technology. This industry is also having an environmental impact in the form of air pollution of its production activities. The laboratory analysis showed that ammonia has emitted, and it was the dominant parameter as the cause of odor in air pollution. This research aims to remove ammonia emissions using dry filtration technology with activated carbon as the filter media in the upright reactor. The reactor is designed from stainless steel material, consisting of 3 trays. The distance between trays is 300 mm, the dimensions of the tray are L.2430 mm, W.1815 mm, H.600 mm, the tray hole diameter is 3 mm. The average gas flow rate is 200-300 Nm3/min. Activated carbon used granules, size 6-8 mm, 200 mm thick in the tray. The results showed that the efficiency of ammonia removal was 81.96%-94.40% and had met the quality standards. This technology is feasible to control ammonia as an odor pollutant in the feed mill industry.


Sign in / Sign up

Export Citation Format

Share Document