benzoyl chloride
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 34)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 7 (1) ◽  
pp. 107-114
Author(s):  
Nadežda Juristová ◽  
Eleonóra Štefanovová ◽  
Tatiana Ďurčeková ◽  
Naďa Prónayová ◽  
Anton Gatial ◽  
...  

(E)-3-(1-Benzofuran-2-yl)propenoic acid (I) was prepared from 1-benzofuran-2-carbaldehyde under the Doebner’s conditions. The obtained acid was converted to the corresponding azide II, which was cyclized by heating in diphenyl ether to [1]benzofuro[3,2-c]pyridin-1(2H)-one (III). This compound was aromatized with phosphorus oxychloride to chloroderivative IV which was reduced with zinc and acetic acid to the title compound V. [1]Benzofuro[3,2-c]pyridin-2-oxide (VI) was synthesized by reaction of V with 3-chloroperoxybenzoic acid in dichloromethane. Treatment VI with benzoyl chloride and potassium cyanide (Reissert-Henze reaction) was shown to produce the corresponding [1]benzofuro[3,2-c]pyridin-1-carbonitrile (VII). The title compound was used for preparation of complex compounds VIII, IX


Effects of chemical treatments with benzoyl chloride, acetone and alkali on the physical and mechanical properties of Orange Peel Particulate (OPP) reinforced epoxy composite materials have been studied. Hand lay-up technique was applied to manufacture the composites. The experimental results illustrate that chemical treatment with benzoyl chloride has a considerable impact. The properties of OPP reinforced composite material have been enhanced by 15% (for tensile test) and 30% (in case of flexural test) due to benzoyl chloride treatment as compared to raw OPP composites. It is evident from Fourier Transform Infrared Spectroscopy (FTIR) that non cellulosic content was removed from the surface of the fiber due to benzoyl chloride treatment. After chemical treatment there was good interfacial bonding between matrix and filler material as observed in SEM micrographs. From the experimental observations, it can be seen that among all fabricated composites, set of composites with 30% filler loading yields excellent mechanical properties.


2021 ◽  
Vol 19 (9) ◽  
pp. 88-96
Author(s):  
Marwa Abdulameer Mseer ◽  
Khudheyer Jawad ◽  
Yahya Al-Khafaji

Heterocyclic compounds were prepared from Schiff bases triester derivatives, the first step was included, p- aminobenzoic acids convert to p-amino benzoyl chloride in the presence of thionyl chloride then glycerol was added to form triesters compound A. second step reaction of triester product with the 4-nitrobenzaldehyde, and 3-amino benzaldehyde to produce M1, and M2. The third step. Involve reacted Schiff bases triester derivatives to give heterocyclic compounds M1S, M1A, M2P, and M2K. The structure of all compounds is monitored by (TLC), and identified by many techniques 1HNMR, FT-IR, and melting point.


Author(s):  
Ondřej Peterka ◽  
Robert Jirásko ◽  
Zuzana Vaňková ◽  
Michaela Chocholoušková ◽  
Denise Wolrab ◽  
...  

Author(s):  
Markus Lerch ◽  
Andreas Achazi ◽  
Doreen Mollenhauer ◽  
Jonathan Becker ◽  
Siegfried Schindler

2021 ◽  
pp. 004051752110418
Author(s):  
SFK Sherwani ◽  
SM Sapuan ◽  
Z Leman ◽  
ES Zainudin ◽  
A Khalina

The present study deals with the effects of alkaline and benzoyl chloride treatments of sugar palm fibers (SPFs) on the mechanical and morphological properties of SPF-reinforced poly(lactic acid) (PLA) composites. Seven different parameters of SPFs were compared, which were untreated, three alkaline solution concentrations of 4%, 5%, and 6% for alkaline treatment, and 50 ml benzoyl chloride-treated SPFs at three different soaking durations of 10, 15, and 20 min. Composites of 30 wt.% SPF–reinforced 70 wt.% PLA were prepared by using a Brabender plastograph mixer and a hot press. The tensile, flexural, and impact properties of the SPF/PLA composites were improved after alkaline and benzoyl chloride treatments on the SPFs. However, the best tensile, flexural, and impact properties of the composites were observed at 6% alkaline treatment of SPF; the morphological analysis also supported this. The 6% alkaline treatment of the SPF/PLA composite demonstrated the highest tensile, flexural, and impact strength values of 17.08 MPa, 32.34 MPa, and 4.39 kJ/m2, respectively. These treated SPF/PLA composites could be appropriate for automobile component applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alechine E. Ameh ◽  
Nicholas M. Musyoka ◽  
Oluwaseun Oyekola ◽  
Benoit Louis ◽  
Leslie F. Petrik

Stable HBEA zeolite with high surface area and strong acid sites was synthesized from coal fly ash–based silica extract via indirect hydrothermal synthesis. The rapid HBEA hydrothermal crystallization times of 8, 10, and 12 h were achieved through a reduced molar water fraction in the synthesis composition. The HBEA zeolites prepared from fly ash silica extract exhibited well-defined spheroidal-shaped crystal morphology with uniform particle sizes of 192, 190, or 239 nm obtained after 8, 10, or 12 h of synthesis time, respectively. The high surface area and the microporous area of 702 and 722 m2/g were achieved as a function of shorter hydrothermal synthesis durations (10 and 24 h, respectively) compared to 48 or 72 h, which resulted in HBEA zeolites with lower surface areas of 538 and 670 m2/g. Likewise, temperature-programmed desorption measurements of fly ash–based HBEA zeolites revealed the presence of weak and strong acid sites in the zeolite. The submicron crystal sizes with a well-defined porosity of HBEA zeolites enhanced the diffusion of anisole and benzoyl chloride molecules toward the active acid sites and hence showed better conversion and selectivity in acylation products. High conversion of benzoyl chloride with anisole was achieved, reaching up to 83% with a 93–96% selectivity toward 4-methoxyacetophenone.


Author(s):  
Nuha Y. Elamin ◽  
Elmugdad Ahmed Ali

The hydroxamic acid was prepared by the partial reduction of p- nitro toluene to give N-p-tolyl hydroxyl amine which was coupled with benzoyl chloride to give N-p-tolyl-N-benzohydroxamic acid.The hydroxamic acid prepared was identified by their characteristic colored reaction with vanadium (V) and iron (lll), melting point, I.R.  spectra, 1H NMR and mass spectrometry.The extractive properties of hydroxamic acids towards the metal ions like Fe (lll), Cu (ll), Ni (ll) and Co (ll) were examined using appropriate organic solvent. N-p- tolyl -N-benzohydroxamic acid was found to have a maximum extraction for Fe (lll) 75.10% at pH 5.0, Cu (ll) 99.81% at pH 5.0, Ni (ll) 59.45% at pH 7.0 and Co (ll) 99.40% at pH 10.0.The  hydroxamic acid was found to extract efficiently metals like Ni (ll) in neutral pH values, Fe (lll), Cu (ll), in pH near to neutral and Co (ll) at alkali pH values.


Sign in / Sign up

Export Citation Format

Share Document