eicosanoid metabolism
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Essa Dirandeh ◽  
M. A. Sayyar ◽  
Z. Ansari-Pirsaraei ◽  
H. Deldar ◽  
W. W. Thatcher

AbstractObjective of experiment was to determine whether oxidative stress (OS) and inflammation altered embryonic loss in dairy cows. Blood samples were collected at days 0, 16, 32 and 60 after timed (AI) from 200 Holstein cows to determine embryonic loss based on interferon-stimulated gene-15 (ISG15) mRNA expression (day 16) and ultrasound at day 32 and day 60. Leucocyte expressions of mRNA TLR2, TLR4, TNF-α, IL1B, IL10, STAT3 (inflammation), PTGS2, PTGES (prostaglandin synthesis), and PLA2G4A and ALOX5AP (eicosanoid metabolism) at days 0 and 16 were determined. Plasma redox status for antioxidant enzymatic activities of glutathione peroxidase (GPX), superoxide dismutase (SOD), total antioxidant capacity (TAC), and concentrations of malondialdehyde (MDA) were determined at days 0, 16, 32 and 60. All antioxidant-redox responses were beneficially significant in pregnant cows diagnosed pregnant at day16 and sustained pregnancy to day 60 compared to non-pregnant cows at day16 or pregnant at day16 and lost embryos by days 32 or 60. The leucocyte mRNA expressions of TLR2, TLR4, STAT 3, IL1B, PTGS2, PLA2G4A and ALOX5AP were greater and PTGES was lower at day16 in pregnant cows that lost embryos early (P < 0.05). In conclusion peripheral leucocyte molecular indicators of inflammation and plasma indicators of OS were altered in pregnant cows undergoing embryonic losses compared to cows with a sustained pregnancy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rosa Muñoz-Cano ◽  
Clara San Bartolome ◽  
Rocío Casas-Saucedo ◽  
Giovanna Araujo ◽  
Sonia Gelis ◽  
...  

Cofactors may explain why in some cases food ingestion leads to anaphylaxis while in others elicits a milder reaction or tolerance. With cofactors, reactions become more severe and/or have a lower allergen threshold. Cofactors are present in up to 58% of food anaphylaxis (FAn). Exercise, NSAIDs, and alcohol are the most frequently described, although the underlying mechanisms are poorly known. Several hypotheses have suggested the influence of these cofactors on basophils and mast cells (MCs). Exercise has been suggested to enhance MC activation by increasing plasma osmolarity, redistributing blood flow, and activating adenosine and eicosanoid metabolism. NSAIDs’ cofactor effect has been related with cyclooxygenase inhibition and therefore, prostaglandin E2 (PGE2) production. Indeed, overexpression of adenosine receptor 3 (A3) gene has been described in NSAID-dependent FAn; A3 activation potentiates FcϵRI-induced MC degranulation. Finally, alcohol has been related with an increase of histamine levels by inhibition of diamino oxidase (DAO) and also with and increase of extracellular adenosine by inhibition of its uptake. However, most of these mechanisms have limited evidence, and further studies are urgently needed. In conclusion, the study of the immune-related mechanisms involved in food allergic reactions enhanced by cofactors is of the utmost interest. This knowledge will help to design both tailored treatments and prophylactic strategies that, nowadays, are non-existent.


2020 ◽  
Vol 7 ◽  
Author(s):  
Tomer Katan ◽  
Xi Xue ◽  
Albert Caballero-Solares ◽  
Richard G. Taylor ◽  
Matthew L. Rise ◽  
...  

The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.0, or 1.4%) and ω6:ω3 (high ω6, high ω3, or balanced) on tissue lipid composition, and transcript expression of genes involved in fatty acid and eicosanoid metabolism in Atlantic salmon head kidney. Tissue fatty acid composition was reflective of the diet with respect to C18 PUFA and MUFA levels (% of total FA), and ω6:ω3 (0.5–1.5). Fish fed 0.3% EPA+DHA with high ω6 (0.3% EPA+DHA↑ω6) had the highest increase in proportions (1.7–2.3-fold) and in concentrations (1.4-1.8-fold) of arachidonic acid (ARA). EPA showed the greatest decrease in proportion and in concentration (by ~½) in the 0.3% EPA+DHA↑ω6 fed fish compared to the other treatments. However, no differences were observed in EPA proportions among salmon fed the high ω3 (0.3 and 1.0% EPA+DHA) and balanced (1.4% EPA+DHA) diets, and DHA proportions were similar among all treatments. Further, the transcript expression of elovl5a was lowest in the 0.3% EPA+DHA↑ω6 fed fish, and correlated positively with 20:3ω3, 20:4ω3 and EPA:ARA in the head kidney. This indicates that high dietary 18:3ω3 promoted the synthesis of ω3 LC-PUFA. Dietary EPA+DHA levels had a positive impact on elovl5a, fadsd5 and srebp1 expression, and these transcripts positively correlated with tissue ΣMUFA. This supported the hypothesis that LC-PUFA synthesis is positively influenced by tissue MUFA levels in Atlantic salmon. The expression of pparaa was higher in the 0.3% EPA+DHA↑ω6 compared to the 0.3% EPA+DHA↑ω3 fed fish. Finally, significant correlations between head kidney fatty acid composition and the expression of eicosanoid synthesis-related transcripts (i.e., 5loxa, 5loxb, cox1, cox2, ptges2, ptges3, and pgds) illustrated the constitutive relationships among fatty acids and eicosanoid metabolism in salmon.


2020 ◽  
Vol 295 (47) ◽  
pp. 15988-16001
Author(s):  
Lisha Wei ◽  
Yan-Yan Zheng ◽  
Jie Sun ◽  
Pei Wang ◽  
Tao Tao ◽  
...  

Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.


2020 ◽  
Vol 432 (18) ◽  
pp. 4999-5022 ◽  
Author(s):  
Madhuranayaki Thulasingam ◽  
Jesper Z. Haeggström

PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0230285
Author(s):  
Nurul Saadah Ahmad ◽  
Toh Leong Tan ◽  
Khaizurin Tajul Arifin ◽  
Wan Zurinah Wan Ngah ◽  
Yasmin Anum Mohd Yusof

Author(s):  
Roger G. Biringer

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer’s Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.


2019 ◽  
Vol 8 (5) ◽  
pp. 663 ◽  
Author(s):  
Eva Nüsken ◽  
Eva-Maria Turnwald ◽  
Gregor Fink ◽  
Jenny Voggel ◽  
Christopher Yosy ◽  
...  

There is accumulating evidence for fetal programming of later kidney disease by maternal obesity or associated conditions. We performed a hypothesis-generating study to identify potentially underlying mechanisms. Female mice were randomly split in two groups and fed either a standard diet (SD) or high fat diet (HFD) from weaning until mating and during pregnancy. Half of the dams from both groups were treated with metformin ((M), 380 mg/kg), resulting in four experimental groups (SD, SD-M, HFD, HFD-M). Caesarean section was performed on gestational day 18.5. Fetal kidney tissue was isolated from cryo-slices using laser microdissection methods and a proteomic screen was performed. For single proteins, a fold change ≥1.5 and q-value <0.05 were considered to be statistically significant. Interestingly, HFD versus SD had a larger effect on the proteome of fetal kidneys (56 proteins affected; interaction clusters shown for proteins concerning transcription/translation, mitochondrial processes, eicosanoid metabolism, H2S-synthesis and membrane remodeling) than metformin exposure in either SD (29 proteins affected; clusters shown for proteins involved in transcription/translation) or HFD (6 proteins affected; no cluster). By further analysis, ATP6V1G1, THY1, PRKCA and NDUFB3 were identified as the most promising candidates potentially mediating reprogramming effects of metformin in a maternal high fat diet.


Sign in / Sign up

Export Citation Format

Share Document