diffusible signal factor
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Mingfang Wang ◽  
Xia Li ◽  
Shihao Song ◽  
Chaoyu Cui ◽  
Lian-Hui Zhang ◽  
...  

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, B urkholderia d iffusible s ignal f actor (BDSF, cis -2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


2021 ◽  
Vol 22 (18) ◽  
pp. 9862
Author(s):  
Xudan Xu ◽  
Tian Ye ◽  
Wenping Zhang ◽  
Tian Zhou ◽  
Xiaofan Zhou ◽  
...  

Quorum sensing (QS) is a microbial cell–cell communication mechanism and plays an important role in bacterial infections. QS-mediated bacterial infections can be blocked through quorum quenching (QQ), which hampers signal accumulation, recognition, and communication. The pathogenicity of numerous bacteria, including Xanthomonas campestris pv. campestris (Xcc), is regulated by diffusible signal factor (DSF), a well-known fatty acid signaling molecule of QS. Cupriavidus pinatubonensis HN-2 could substantially attenuate the infection of XCC through QQ by degrading DSF. The QQ mechanism in strain HN-2, on the other hand, is yet to be known. To understand the molecular mechanism of QQ in strain HN-2, we used whole-genome sequencing and comparative genomics studies. We discovered that the fadT gene encodes acyl-CoA dehydrogenase as a novel QQ enzyme. The results of site-directed mutagenesis demonstrated the requirement of fadT gene for DSF degradation in strain HN-2. Purified FadT exhibited high enzymatic activity and outstanding stability over a broad pH and temperature range with maximal activity at pH 7.0 and 35 °C. No cofactors were required for FadT enzyme activity. The enzyme showed a strong ability to degrade DSF. Furthermore, the expression of fadT in Xcc results in a significant reduction in the pathogenicity in host plants, such as Chinese cabbage, radish, and pakchoi. Taken together, our results identified a novel DSF-degrading enzyme, FadT, in C. pinatubonensis HN-2, which suggests its potential use in the biological control of DSF-mediated pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sören Bellenberg ◽  
Beatriz Salas ◽  
Suresh Ganji ◽  
Cristian Jorquera-Román ◽  
Maria Luisa Valenzuela ◽  
...  

AbstractBioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.


Author(s):  
Sabrina Di Masi ◽  
Giuseppe E. De Benedetto ◽  
Cosimino Malitesta ◽  
Maria Saponari ◽  
Cinzia Citti ◽  
...  

AbstractOlive quick decline syndrome (OQDS) is a disorder associated with bacterial infections caused by Xylella fastidiosa subsp. pauca ST53 in olive trees. Metabolic profile changes occurring in infected olive trees are still poorly investigated, but have the potential to unravel reliable biomarkers to be exploited for early diagnosis of infections. In this study, an untargeted metabolomic method using high-performance liquid chromatography coupled to quadrupole-time-of-flight high-resolution mass spectrometry (HPLC-ESI-Q-TOF-MS) was used to detect differences in samples (leaves) from healthy (Ctrl) and infected (Xf) olive trees. Both unsupervised and supervised data analysis clearly differentiated the groups. Different metabolites have been identified as potential specific biomarkers, and their characterization strongly suggests that metabolism of flavonoids and long-chain fatty acids is perturbed in Xf samples. In particular, a decrease in the defence capabilities of the host after Xf infection is proposed because of a significant dysregulation of some metabolites belonging to flavonoid family. Moreover, oleic acid is confirmed as a putative diffusible signal factor (DSF). This study provides new insights into the host-pathogen interactions and confirms LC-HRMS-based metabolomics as a powerful approach for disease-associated biomarkers discovery in plants. Graphical abstract


2021 ◽  
Vol 17 (2) ◽  
pp. e1009357
Author(s):  
Rimi Chowdhury ◽  
Paulina D. Pavinski Bitar ◽  
Ivan Keresztes ◽  
Anthony M. Condo ◽  
Craig Altier

Successful intestinal infection by Salmonella requires optimized invasion of the gut epithelium, a function that is energetically costly. Salmonella have therefore evolved to intricately regulate the expression of their virulence determinants by utilizing specific environmental cues. Here we show that a powerful repressor of Salmonella invasion, a cis-2 unsaturated long chain fatty acid, is present in the murine large intestine. Originally identified in Xylella fastidiosa as a diffusible signal factor for quorum sensing, this fatty acid directly interacts with HilD, the master transcriptional regulator of Salmonella, and prevents hilA activation, thus inhibiting Salmonella invasion. We further identify the fatty acid binding region of HilD and show it to be selective and biased in favour of signal factors with a cis-2 unsaturation over other intestinal fatty acids. Single mutation of specific HilD amino acids to alanine prevented fatty acid binding, thereby alleviating their repressive effect on invasion. Together, these results highlight an exceedingly sensitive mechanism used by Salmonella to colonize its host by detecting and exploiting specific molecules present within the complex intestinal environment.


2021 ◽  
Vol 9 (2) ◽  
pp. 239
Author(s):  
Julie Baltenneck ◽  
Sylvie Reverchon ◽  
Florence Hommais

Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.


2021 ◽  
pp. 116802
Author(s):  
Yongzhao Guo ◽  
Yunpeng Zhao ◽  
Xi Tang ◽  
Tianxing Na ◽  
Juejun Pan ◽  
...  

Author(s):  
Golara Gerayelou ◽  
Bahman Khameneh ◽  
Bizhan Malaekeh-Nikouei ◽  
Asma Mahmoudi ◽  
Bibi Sedigheh Fazly Bazzaz

2020 ◽  
Vol 8 (10) ◽  
pp. 1485
Author(s):  
Tian Ye ◽  
Wenping Zhang ◽  
Zhixuan Feng ◽  
Xinghui Fan ◽  
Xudan Xu ◽  
...  

Diffusible signal factor (DSF) is a type of cis unsaturated fatty acid, with a chemical structure of 11-methyl-2-dodecylene acid. DSF is widely conserved in a variety of Gram-negative bacterial pathogens and is involved in the regulation of pathogenic virulence. Quorum quenching (QQ) is a promising strategy for preventing and controlling quorum sensing (QS)-mediated bacterial infections by interfering with the QS system of pathogens. In this study, a novel DSF-degrading bacterium, Burkholderia anthina strain HN-8, was isolated and characterized for its degradation ability and potential biocontrol of black rot disease caused by Xanthomonas campestris pv. campestris (Xcc). The HN-8 strain exhibited superb DSF degradation activity and completely degraded 2 mM DSF within 48 h. In addition, we present the first evidence of bacterium having a metabolic pathway for the complete degradation and metabolism of DSF. Analysis of DSF metabolic products by gas chromatography–mass spectrometry led to the identification of dodecanal as the main intermediate product, revealing that DSF could be degraded via oxidation–reduction. Furthermore, application of strain HN-8 as a potent biocontrol agent was able to significantly reduce the severity of black rot disease in radishes and Chinese cabbage. Taken together, these results shed light on the QQ mechanisms of DSF, and they provide useful information showing the potential for the biocontrol of infectious diseases caused by DSF-dependent bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document