electromagnetic propagation
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 47)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 104 (11) ◽  
Author(s):  
Pedro D. S. Silva ◽  
Letícia Lisboa-Santos ◽  
Manoel M. Ferreira ◽  
Marco Schreck

2021 ◽  
Author(s):  
Keli Sun ◽  
Michael Thiel ◽  
Ettore Mirto ◽  
Sarwa Tan ◽  
Jianguo Liu ◽  
...  

Abstract Over the last two decades, the continuing integration of distance-to-boundary logging while drilling (LWD) workflows with the directional drilling processes, has dramatically improved geosteering of deviated and horizontal wells. However, the interpretation of underlying propagation azimuthal electromagnetic measurements has remained challenging in complex thin and multi-layered geologies. Recent technology advancements in LWD electromagnetic propagation resistivity coupled with significant software enhancements provide an opportunity for improving the formation evaluation to reduce wellbore position uncertainty, accurately detecting physical parameters such as layer resistivity and anisotropy, formation dip and azimuth. A newly developed multilayer mapping-while-drilling service with full azimuthal sensitivity is introduced for use in geosteering and formation evaluation while drilling applications. The tool offers the industry's first combination of axial, tilted and transverse antennas to produce a complete measurement set to enable the interpretation of complex and anisotropic formation. Advanced application algorithms are used to calculate a high-definition map of the formation providing horizontal and vertical resistivity (anisotropy), as well as dipping angle and azimuth. Furthermore, the tool can provide deep resistivity borehole images while drilling in real time. The new measurement set, more comprehensive than any other directional propagation resistivity tool in the industry, is discussed in detail. The measurements, combined with a new deterministic inversion, enable reconstruction of the resistivity of up to eight formation layers, and significantly outperforms existing directional propagation resistivity services. The new measurements and data processing workflow are demonstrated with several synthetic and field data. Examples show that this newly developed tool can provide a reliable two-in-one service: geosteering and advanced formation evaluation.


2021 ◽  
Author(s):  
Dongming Lin ◽  
Hongjun Wang

Abstract Considering the reconstruction of electromagnetic maps without the prior information of electromagnetic propagation environment in the target area, a new algorithm based on affinity propagation clustering is proposed to complete the electromagnetic map reconstruction of the target area from points to surfaces and then from points and surfaces to a larger surface. Firstly, according to the actual situation, the target area is reasonably divided into grids. Electromagnetic data is sampled by distributed sensing nodes, and a certain number of sample points are selected for affinity propagation clustering to determine the locations of centers of sample points. Secondly, for the incomplete sample data, the Kriging algorithm is used to reconstruct the small circular electromagnetic maps. The class center is the center of the circle and the radius is certain. After that, the obtained small area electromagnetic map data and the data obtained from the sample points are used for domain mapping processing, and the electromagnetic data of a larger area of the target area is obtained. Finally, the overall electromagnetic map is reconstructed through data fusion. The simulation results show that the proposed algorithm is better than several interpolation algorithms. When sample points account for 0.1 of total data points, the RMSE of the result is less than 1.5.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260060
Author(s):  
Esteban Egea-Lopez ◽  
Jose Maria Molina-Garcia-Pardo ◽  
Martine Lienard ◽  
Pierre Degauque

Accurate characterization and simulation of electromagnetic propagation can be obtained by ray-tracing methods, which are based on a high frequency approximation to the Maxwell equations and describe the propagating field as a set of propagating rays, reflecting, diffracting and scattering over environment elements. However, this approach has been usually too computationally costly to be used in large and dynamic scenarios, but this situation is changing thanks the increasing availability of efficient ray-tracing libraries for graphical processing units. In this paper we present Opal, an electromagnetic propagation simulation tool implemented with ray-tracing on graphical processing units, which is part of the Veneris framework. Opal can be used as a stand-alone ray-tracing simulator, but its main strength lies in its integration with the game engine, which allows to generate customized 3D environments quickly and intuitively. We describe its most relevant features and provide implementation details, highlighting the different simulation types it supports and its extension possibilites. We provide application examples and validate the simulation on demanding scenarios, such as tunnels, where we compare the results with theoretical solutions and further discuss the tradeoffs between the simulation types and its performance.


2021 ◽  
Author(s):  
Tingzhao Fu ◽  
Yubin Zang ◽  
Honghao Huang ◽  
Zhenmin Du ◽  
Chengyang Hu ◽  
...  

2021 ◽  
Author(s):  
Massimiliano Gargiulo ◽  
Antonio Iodice ◽  
Daniele Riccio ◽  
Giuseppe Ruello

2021 ◽  
Vol 18 (5) ◽  
pp. 653-663
Author(s):  
Xinghan Li ◽  
Wenxiu Zhang ◽  
Wenxuan Chen ◽  
Yali Zhang ◽  
Jian Zheng ◽  
...  

Abstract With the development of complex and unconventional reservoirs, oil and gas exploration becomes increasingly difficult. Highly deviated wells/horizontal wells are widely used. The electromagnetic propagation logging while drilling (LWD) is more effective in complex geological environment detection owing to geological orientation and real-time formation evaluation. However, its operating frequency is generally at the MHz level. Traditional acquisition techniques require an analogue to digital converter with high sampling rates, which will introduce complex circuit structures and increase sampling costs. The undersampling technology has overcome these disadvantages. The difficulties in the undersampling technology include the selection of an undersampling frequency and the acquisition of a signal correction coefficient. The range of undersampling frequencies and a correction coefficient has been developed to process the electromagnetic propagation LWD measurements in this paper. The range of undersampling frequency ensures the validity of the sampled data. The correction coefficient ensures that different frequency signals use the same undersampling frequency to obtain the same frequency recovery signal. The correctness of these parameters is verified by simulation and field data examples. The range of undersampling frequency and a correction coefficient has been applied, improving the data stability and providing reliable technical support for the exploration and development of unconventional oil and gas.


2021 ◽  
Vol 11 (15) ◽  
pp. 7153
Author(s):  
Hairu Wang ◽  
Qiao Chen ◽  
Oskar Zetterstrom ◽  
Oscar Quevedo-Teruel

Lenses are used for multiple applications, including communications, surveillance and security, and medical instruments. In homogeneous lenses, the contour is used to control the electromagnetic propagation. Differently, graded-index lenses make use of inhomogeneous materials, which is an extra degree of freedom. This extra degree of freedom enables the design of devices with a high performance. For instance, rotationally symmetric lenses without spherical aberrations, e.g., the Luneburg lens, can be designed. However, the manufacturing of such lenses is more complex. One possible approach to implement these lenses is using metamaterials, which are able to produce equivalent refractive indices. Here, we propose a new type of three-dimensional metamaterial formed with two independent sets of wires. The double-mesh twin-wire structure permits the propagation of a first mode without cut-off frequency and with low dispersion and high isotropy. These properties are similar to periodic structures with higher symmetries, such as glide symmetry. The variations of the equivalent refractive index are achieved with the dimension of the meandered wires. The potential of this new metamaterial is demonstrated with simulated results of a Luneburg meta-lens.


2021 ◽  
Author(s):  
jordan dugan ◽  
Tom J. Smy ◽  
Shulabh Gupta

An accelerated Integral Equations (IE) field solver for determining scattered fields from electrically large electromagnetic metasurfaces utilizing Fast Multipole Method (FMM) is proposed and demonstrated in 2D. In the proposed method, practical general metasurfaces are expressed using an equivalent zero thickness sheet model described using surface susceptibilities, and where the total fields around it satisfy the Generalized Sheet Transition Conditions (GSTCs). While the standard IE-GSTC offers fast field computation compared to other numerical methods, it is still computationally demanding when solving electrically large problems, with a large number of unknowns. Here we accelerate the IE-GSTC method using the FMM technique by dividing the current elements on the metasurface into near- and far-groups, where either the rigorous or approximated Green’s function is used, respectively, to reduce the computation time without losing solution accuracy. Using numerical examples, the speed improvement of the FMM IE-GSTC method O(N<sup>1.5</sup>) over the standard IE-GSTC O(N<sup>3</sup>) method is confirmed. Finally, the usefulness of the FMM IE-GSTC is demonstrated by applying it to solve electromagnetic propagation inside an electrically large radio environment with strategically placed metasurfaces to improve signal coverage in blind areas, where a standard IE-GSTC solver would require prohibitively large computational resources and long simulation times.


Sign in / Sign up

Export Citation Format

Share Document