sea bottom
Recently Published Documents


TOTAL DOCUMENTS

1070
(FIVE YEARS 167)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Zunlei Liu ◽  
Yan Jin ◽  
Liping Yan ◽  
Yi Zhang ◽  
Hui Zhang ◽  
...  

Identifying the spatio-temporal distribution hotspots of fishes and allocating priority conservation areas could facilitate the spatial planning and efficient management. As a flagship commercial fishery species, Largehead hairtail (Trichiurus japonicus) has been over-exploited since the early 2000s. Therefore, the spatio-temporal management of largehead hairtail nursery grounds could effective help its recovery. This study aims to predict juvenile largehead hairtail distribution patterns and identify priority conservation areas for nursery grounds. A two-stage hierarchical Bayesian spatio-temporal model was applied on independent scientific survey data (Catch per unit effort, CPUE) and geographic/physical variables (Depth, Distance to the coast, Sea bottom temperature, Dissolved oxygen concentration and Net primary production) to analyze the probability of occurrence and abundance distribution of juvenile largehead hairtail. We assessed the importance of each variable for explaining the occurrence and abundance. Using persistence index, we measured the robustness of hotspots and identified persistent hotspots for priority conservation areas. Selected models showed good predictive capacity on occurrence probability (AUC = 0.81) and abundance distribution (r = 0.89) of juvenile largehead hairtail. Dissolved oxygen, net primary production, and sea bottom temperature significantly affected the probability of occurrence, while distance to the coast also affected the abundance distribution. Three stable nursery grounds were identified in Zhejiang inshore waters, the largest one was located on the east margin of the East China Sea hairtail national aquatic germplasm resources conservation zones (TCZ), suggesting that the core area of nursery grounds occurs outside the protected areas. Therefore, recognition of these sites and their associated geographic/oceanic attributes provides clear targets for optimizing largehead hairtail conservation efforts in the East China Sea. We suggested that the eastern and southern areas of TCZ should be included in conservation planning for an effective management within a network of marine protected areas.


2022 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Sung-Jo Yun ◽  
Hyo-Gon Kim ◽  
Jung-Woo Park ◽  
Hyo-Jun Lee ◽  
Jong-Chan Kim ◽  
...  

Owing to environmental constraints, it is challenging to stably conduct various missions or surveys of the seabed for a prolonged period in the marine environment. To address this challenge, several devices and technologies are being developed. In this study, we aimed to develop an unmanned underwater vehicle (UUV)—specifically, a towed underwater platform—that can be loaded and unloaded via joint operation with an unmanned surface vehicle, which can be connected to a wired cable to obtain a stable power supply and high-speed communication. In addition, various sensors for detection are employed to investigate the marine environment and conduct missions. Furthermore, we operated the developed UUV in actual waters, reviewed the results, and examined its practical operability.


2022 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Hansoo Kim ◽  
Garam Kim ◽  
Mira Kim ◽  
Donhyug Kang

The Yellow Sea Bottom Cold Water (YSBCW) refers to seawater with a water temperature of 10 °C or less found at the bottom of the center of the Yellow Sea. The spatiotemporal variability of the YSBCW directly affects the distribution of organisms in the marine ecosystem. In this study, hydroacoustic and net surveys were conducted in April (spring) to understand the spatial distribution of the sound scattering layer (SSL) and estimate the density of Euphausia pacifica (E. pacifica) in the YSBCW. Despite the shallow water in the YSBCW region, E. pacifica formed an SSL, which was distributed near the bottom during the daytime; it showed a diel vertical migration (DVM) pattern of movement toward the surface during the nighttime. The mean upward and downward swimming speeds around sunset and sunrise were approximately 0.6 and 0.3–0.4 m/min, respectively. The E. pacifica density was estimated in the central, western, and eastern regions; the results were approximately 15.8, 1.3, and 10.3 g/m2, respectively, indicating significant differences according to region. The results revealed high-density distributions in the central and eastern regions related to the water temperature structure, which differs regionally in the YSBCW area. Additional studies are needed regarding the spatial distribution of E. pacifica in the YSBCW and its relationship with various ocean environmental parameters according to season. The results of this study contribute to a greater understanding of the structure of the marine ecosystem in the YSBCW.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 36
Author(s):  
Emanuele Alcaras ◽  
Claudio Parente ◽  
Andrea Vallario

<p class="Abstract">Electronic Navigational Charts (ENCs), official databases created by a national hydrographic office and included in Electronic Chart Display and Information System (ECDIS), supply, among essential indications for safe navigation, data about sea-bottom morphology in terms of depth points and isolines. Those data are very useful to build bathymetric 3D models: applying interpolation methods, it is possible to produce a continuous representation of the seafloor for supporting studies concerning different aspects of a marine area, such as directions and intensity of currents, sensitivity of habitats and species, etc. Many interpolation methods are available in literature for bathymetric data modelling: among them kriging ones are extremely performing, but require deep analysis to define input parameters, i.e. semi-variogram models. This paper aims to analyze kriging approaches for depth data concerning the Bay of Pozzuoli. The attention is focused on the role of semi-variogram models for Ordinary and Universal kriging. Depth data included in two ENCs, namely IT400129 and IT400130, are processed using Geostatistical Analyst, an extension of ArcGIS 10.3.1 (ESRI). The results testify the relevance of the choice of the mathematical functions of the semi-variogram: Stable Model supplies, for this case study, the best performance in terms of depth accuracy for both Ordinary and Universal kriging.</p>


Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 221-252
Author(s):  
Ladislav PLACER ◽  
Petra JAMŠEK RUPNIK ◽  
Bogomir CELARC

The Sistiana Fault is an alleged disjunctive deformation of Microadria in the sea bottom of the Gulf of Trieste. Onshore, it is visible only in the Sistiana Bay, but towards the northeast it soon pinches-out, in structural-geometric terms it diminishes soon after the crossing of the thrust boundary of the Dinarides, or the Istrian-Friuli Underthrustig Zone, respectively. Further to the northeast, only the bending zone is developed in the External Dinarides, which stretches all the way from the Sistiana Bay to the Idrija-Žiri area. We named it the Sistiana Bending Zone. Its direction can be determined based on geological maps and is around 60°, so we conclude that the Sistiana Fault should extend approximately in this direction. In the bending zone, the Trieste-Komen Anticlinorium, the Vipava Synclinorium, the Trnovo Nappe opposite to the Hrušica Nappe and the Raša and Idrija Faults are laterally bent. The size of the bend is the largest in the Sistiana Bay, and in the east-northeast direction it decreases linearly. The general geological circumstances suggest that the Sistiana Fault has not been recently active.


2021 ◽  
Author(s):  
Andrei A. Sushchenko ◽  
Elizaveta R. Liu ◽  
Vladimir A. Kan
Keyword(s):  

Quaternary ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 44
Author(s):  
Gemma Aiello ◽  
Mauro Caccavale

This study discusses the siliciclastic to bioclastic deposits (in particular, the rhodolith deposits) in the Gulf of Naples based on sedimentological and seismo-stratigraphic data. The selected areas are offshore Ischia Island (offshore Casamicciola, Ischia Channel), where a dense network of sea-bottom samples has been collected, coupled with Sparker Multi-tip seismic lines, and offshore Procida–Pozzuoli (Procida Channel), where sea-bottom samples are available, in addition to Sparker seismic profiles. The basic methods applied in this research include sedimentological analysis, processing sedimentological data, and assessing seismo-stratigraphic criteria and techniques. In the Gulf of Naples, and particularly offshore Ischia, bioclastic sedimentation has been controlled by seafloor topography coupled with the oceanographic setting. Wide seismo-stratigraphic units include the bioclastic deposits in their uppermost part. Offshore Procida–Pozzuoli, siliciclastic deposits appear to prevail, coupled with pyroclastic units, and no significant bioclastic or rhodolith deposits have been outlined based on sedimentological and seismo-stratigraphic data. The occurrence of mixed siliciclastic–carbonate depositional systems is highlighted in this section of the Gulf of Naples based on the obtained results, which can be compared with similar systems recognized in the central Tyrrhenian Sea (Pontine Islands).


2021 ◽  
pp. 1-60
Author(s):  
John Decker ◽  
Philip Teas ◽  
Daniel Orange ◽  
Bernie B. Bernard

From 2015 to 2018, TGS conducted a comprehensive multiclient oil and gas seep hunting survey in the Gulf of Mexico. The basis for identifying seeps on the sea bottom was a high-resolution Multi-Beam Echo Sounder survey, mapping approximately 880,000 km2 of the sea bottom deeper than 750 m water depth, at a bathymetric resolution of 15 m and a backscatter resolution of 5 m. We have identified more than 5000 potential oil and/or gas seeps, and of those, we cored approximately 1500 for hydrocarbon geochemical analysis. The sea bottom features best related to hydrocarbon seepage in the GoM are high backscatter circular features with or without bathymetric expression, high backscatter features with “flow” appearance, mud volcanoes, pock marks, brine pools, “popcorn” texture, faults, and anticlinal crests. We also tracked gas plumes in the water column back to the sea bottom to provide an additional criterion for hydrocarbon seepage. Cores from sea bottom targets recovered liquid oil, tar, and gas hydrates. Oil extract and gas analyses of samples from most target types produced values substantially higher than background in oil and gas.


Radiocarbon ◽  
2021 ◽  
pp. 1-16
Author(s):  
Kaoru Kubota ◽  
Kotaro Shirai ◽  
Naoko Murakami-Sugihara ◽  
Koji Seike ◽  
Masayo Minami ◽  
...  

ABSTRACT Tsunamis are huge disasters that can significantly damage benthic organisms and the sea-bottom environment in coastal areas. It is of great ecological importance to understand how benthic ecosystems respond to such destructive forces and how individual species are affected. Investigating the effect of such disasters on animals that are seldom caught alive is particularly difficult. Bivalve mollusks are especially suitable for investigating how a tsunami affects coastal benthic species because they preserve an environmental record in their shells that can be extended back in time by crossdating the records of multiple individuals. Here we studied dead shells of Mercenaria stimpsoni, a long-lived clam, and precisely determined the time of death by using nuclear bomb–induced radiocarbon (bomb-14C) and by counting annual growth increments. First, a quasi-continuous, regional bomb-14C record was created by analyzing the shells of 6 live-caught M. stimpsoni individuals. Then 27 dead shells collected from the seafloor of Funakoshi Bay were 14C-dated and analyzed. The results showed that the huge tsunami that struck northeastern Japan on 11 March 2011 caused mass mortality of this bivalve in Funakoshi Bay. Nine of the 27 clams died during the March 2011 tsunami, probably by starvation after burial by tsunami deposits or exposure above the seafloor as a result of sediment liquefaction during the earthquake. The dating method used in this study can help us understand how long-lived marine organisms with low population density are affected by huge natural disasters such as a tsunami.


Sign in / Sign up

Export Citation Format

Share Document