dissociation temperature
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 210
Author(s):  
Ioannis Nikolaos Tsimpanogiannis ◽  
Emmanuel Stamatakis ◽  
Athanasios Konstantinos Stubos

We examine the critical pore radius that results in critical gas saturation during pure methane hydrate dissociation within geologic porous media. Critical gas saturation is defined as the fraction of gas volume inside a pore system when the methane gas phase spans the system. Analytical solutions for the critical pore radii are obtained for two, simple pore systems consisting of either a single pore-body or a single pore-body connected with a number of pore-throats. Further, we obtain critical values for pore sizes above which the production of methane gas is possible. Results shown in the current study correspond to the case when the depression of the dissociation temperature (due to the presence of small-sized pores; namely, with a pore radius of less than 100 nm) is considered. The temperature shift due to confinement in porous media is estimated through the well-known Gibbs-Thompson equation. The particular results are of interest to geological media and particularly in the methane production from the dissociation of natural hydrate deposits within off-shore oceanic or on-shore permafrost locations. It is found that the contribution of the depression of the dissociation temperature on the calculated values of the critical pore sizes for gas production is limited to less than 10% when compared to our earlier study where the porous media effects have been ignored.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7737
Author(s):  
Omar Mounkachi ◽  
Asmae Akrouchi ◽  
Ghassane Tiouitchi ◽  
Marwan Lakhal ◽  
Elmehdi Salmani ◽  
...  

Magnesium is an attractive hydrogen storage candidate due to its high gravimetric and volumetric storage capacities (7.6 wt.% and 110 gH2/l, respectively). Unfortunately, its use as a storage material for hydrogen is hampered by the high stability of its hydride, its high dissociation temperature of 573–673 K and its slow reaction kinetics. In order to overcome those drawbacks, an important advancement toward controlling the enthalpy and desorption temperatures of nano-structured MgH2 thin films via stress/strain and size effects is presented in this paper, as the effect of the nano-structuring of the bulk added to a biaxial strain on the hydrogen storage properties has not been previously investigated. Our results show that the formation heat and decomposition temperature correlate with the thin film’s thickness and strain/stress effects. The instability created by decreasing the thickness of MgH2 thin films combined with the stress/strain effects induce a significant enhancement in the hydrogen storage properties of MgH2.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 201
Author(s):  
Hao Bian ◽  
Lu Ai ◽  
Klaus Hellgardt ◽  
Geoffrey C. Maitland ◽  
Jerry Y. Y. Heng

In a study designed to investigate the melting behaviour of natural gas hydrates which are usually formed in porous mineral sediments rather than in bulk, hydrate phase equilibria for binary methane and water mixtures were studied using high-pressure differential scanning calorimetry in mesoporous and macroporous silica particles having controlled pore sizes ranging from 8.5 nm to 195.7 nm. A dynamic oscillating temperature method was used to form methane hydrates reproducibly and then determine their decomposition behaviour—melting points and enthalpies of melting. Significant decreases in dissociation temperature were observed as the pore size decreased (over 6 K for 8.5 nm pores). This behaviour is consistent with the Gibbs–Thomson equation, which was used to determine hydrate–water interfacial energies. The melting data up to 50 MPa indicated a strong, essentially logarithmic, dependence on pressure, which here has been ascribed to the pressure dependence of the interfacial energy in the confined media. An empirical modification of the Gibbs–Thomson equation is proposed to include this effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arul Bharathi ◽  
Omar Nashed ◽  
Bhajan Lal ◽  
Khor Siak Foo

AbstractThis paper presents an experimental and modeling studies on the thermodynamic inhibition effects of the mixture of monoethlyene glycol (MEG) and glycine (Gly) on the carbon dioxide hydrate phase boundary condition. The monoethlyene glycol and glycine (1:1) mixture inhibition effects were investigated at concentrations of 5, 10, and 15 wt.% and pressure ranges from 2.0–4.0 MPa. The effects of the proposed mixture on the carbon dioxide hydrate phase boundary were evaluated by measuring the dissociation temperature of carbon dioxide hydrate using a T-cycle method. The synergistic effect was evaluated based on comparison with pure MEG and Gly data. The results show that 15 wt.% of MEG and Gly mixture displays the highest inhibition effect compared to the 5 and 10 wt.% mixtures, respectively. However, the synergistic effect is higher at 10 wt.%. Dickens' model was also adopted to predict the phase equilibrium data of CO2 hydrates in the presence of the mixture. The modified model successfully predicted the data within a maximum error of ± 0.52 K.


RSC Advances ◽  
2021 ◽  
Vol 11 (60) ◽  
pp. 37677-37683
Author(s):  
Ying Cheng ◽  
Shuhua Zhou ◽  
Biqing Shi ◽  
Bing Dong ◽  
Xianbin Ji ◽  
...  

The MgH2–Ce0.8Fe0.1Zr0.1O2 onset dissociation temperature was 82 K lower than that of MgH2.


Biopolymers ◽  
2020 ◽  
Author(s):  
Eiman A. Osman ◽  
B. Safeenaz Alladin‐Mustan ◽  
Sarah C. Hales ◽  
Gunwant K. Matharu ◽  
Julianne M. Gibbs

2020 ◽  
Vol 35 (21) ◽  
pp. 2050110
Author(s):  
M. Abu-shady ◽  
H. M. Fath-Allah

Generalized temperature and anisotropy dependent Debye screening mass is introduced into the real part of a potential in an anisotropic plasma. The N-radial Schrödinger equation (SE) is approximately solved by using the Nikiforov–Uvarov (NU) method which based on the expansion of power series. Binding energies and dissociation temperatures of charmonium and bottomonium are calculated. In addition, we have calculated the screening mass values for different parameters. Comparing to their values in an isotropic medium, the charmonium and bottomonium binding energies within an anisotropic medium are found to be increased. Also, the dissociation temperatures of both the charmonium and the bottomonium within anisotropic environments appear larger relative to those found within an isotropic medium. Finally, one observes that in any medium the bottomonium dissociation temperature is higher than the charmonium one.


2020 ◽  
Vol 4 (1) ◽  
pp. 91-97
Author(s):  
Valentina V. Malakhova

Suitable conditions for the formation of methane hydrates exist in the bottom sediments of shallow Arctic shelves in the presence of permafrost. Salt diffusion into hydrated bottom sediments can help accelerate hydrate degradation. An analysis of the influence of salinity of the bottom sediments of the Arctic shelf on the thickness of the methane hydrate stability zone was based on mathematical modeling. Estimates of the thickness of the stability zone were obtained in experiments with various correlations which relate the hydrate dissociation temperature in the presence of aqueous solutions containing salts.


2019 ◽  
Vol 100 (1) ◽  
Author(s):  
Peng Cheng ◽  
Xiaofeng Luo ◽  
Jialun Ping ◽  
Hongshi Zong

Sign in / Sign up

Export Citation Format

Share Document