elastic wave equations
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Jinxuan Tang ◽  
Hui Zhou ◽  
Chuntao Jiang ◽  
Muming Xia ◽  
Hanming Chen ◽  
...  

ABSTRACT As a complementary way to traditional wave-equation-based forward modeling methods, lattice spring model (LSM) is introduced into seismology for wavefield modeling owing to its remarkable stability, high-calculation accuracy, and flexibility in choosing simulation meshes, and so forth. The LSM simulates seismic-wave propagation from a micromechanics perspective, thus enjoying comprehensive characterization of elastic dynamics in complex media. Incorporating an absorbing boundary condition (ABC) is necessary for wavefield modeling to avoid the artificial reflections caused by truncated boundaries. To the best of our knowledge, the perfectly matched layer (PML) method has been a routine ABC in the wave-equation-based numerical modeling of wave physics. However, it has not been used in the nonwave-equation-based LSM simulations. In this work, we want to apply PML to LSM to attenuate the boundary reflections. We divide the whole simulation region into PML region and inner region, PML region surrounds the inner region. To incorporate PML to LSM, we establish elastic-wave equations corresponding to LSM. The simulation in the PML region is conducted using the established wave equations and the simulation in the inner region is conducted using LSM. Three simulation examples show that the PML scheme is effective and outperforms Gaussian ABC.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Zhanyuan Liang ◽  
Guochen Wu ◽  
Xiaoyu Zhang ◽  
Qingyang Li

Reflection full-waveform inversion (RFWI) can reduce the nonlinearity of inversion providing an accurate initial velocity model for full-waveform inversion (FWI) through the tomographic components (low-wavenumber). However, elastic-wave reflection full-waveform inversion (ERFWI) is more vulnerable to the problem of local minimum due to the complicated multi-component wavefield. Our algorithm first divides kernels of ERFWI into four subkernels based on the theory of decoupled elastic-wave equations. Then we try to construct the tomographic components of ERFWI with only single-component wavefields, similarly to acoustic inversions. However, the S-wave velocity is still vulnerable to the coupling effects because of P-wave components contained in the S-wavefield in an inhomogeneous medium. Therefore we develop a method for decoupling elastic- wave equations in an inhomogeneous medium, which is applied to the decomposition of kernels in ERFWI. The new decoupled system can improve the accuracy of S-wavefield and hence further reduces the high-wavenumber crosstalk in the subkernel of S-wave velocity after kernels are decomposed. The numerical examples of Sigsbee2A model demonstrate that our ERFWI method with decoupled elastic-wave equations can efficiently recover the low-wavenumber components of the model and improve the precision of the S-wave velocity.


Author(s):  
Kadry Zakaria ◽  
Magdy Sirwah ◽  
Ahmed Abouelregal ◽  
Ali Farouk Rashid

This paper deals with the study of photothermoelastic interactions in an isotropic homogeneous semiconductor solid, using a new model of generalized thermoelectricity with a memory-dependent derivative of heat conduction. The plasma and thermal effects study of semiconductor structures include the simulation of a complex system using simultaneous analysis of carrier density, thermal waves, and elastic wave equations. On this topic, there are few research works that have been achieved. To investigate the problem, Tzou’s generalized theory is employed. The governing equations of the system are derived based on the dual-phase lag model (DPL) and the wave equation of coupled plasma. We examined the transient response of a rotating solid cylinder subjected to the applied magnetic field and a time-dependent heat flow under the new proposed model. The analytical expressions for the investigated fields are derived by using the Laplace transform process and the numerical results are graphically previewed. A comparison of the numerical results is provided for various models of thermoelasticity as well as the impact of memory- dependent derivatives. The effects of rotation, time-delay and the kernel function are also investigated


2021 ◽  
Vol 19 (1) ◽  
pp. 46-86
Author(s):  
Jianliang Qian ◽  
Jian Song ◽  
Wangtao Lu ◽  
Robert Burridge

Sign in / Sign up

Export Citation Format

Share Document