cold component
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 922 (2) ◽  
pp. 238
Author(s):  
De-Chao Song ◽  
Y. Li ◽  
Y. Su ◽  
M. D. Ding ◽  
W. Q. Gan

Abstract In this paper, we present a detailed morphological, kinematic, and thermal analysis of two homologous magnetic flux ropes (MFRs) from NOAA 11515 on 2012 July 8–9. The study is based on multiwavelength and dual-perspective imaging observations from the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory Ahead spacecraft, which can reveal the structure and evolution of the two MFRs. We find that both of the MFRs show up in multiple passbands and their emissions mainly consist of a cold component peaking at a temperature of ∼0.4–0.6 MK and a hot component peaking at ∼7–8 MK. The two MFRs exhibit erupting, expanding, and untwisting motions that manifest distinctive features from two different viewpoints. Their evolution can be divided into two stages—a fast-eruption stage with speeds of about 105–125 km s−1 for MFR-1 and 50–65 km s−1 for MFR-2—and a slow-expansion (or untwisting) stage with speeds of about 10–35 km s−1 for MFR-1 and 10–30 km s−1 for MFR-2 in the plane of the sky. We also find that during the two-stage evolution, the high-temperature features mainly appear in the interface region between MFRs and ambient magnetic structures and also in the center of MFRs, which suggests that some heating processes take place in such places as magnetic reconnection and plasma compression. These observational results indicate that the eruption and untwisting processes of MFRs are coupled with the heating process, among which an energy conversion exists.


Author(s):  
Lia Syafitri ◽  
Usman Sidabutar

This study constituted an analysis of an ideal marriage in the novel published in 2018. The significant components of the marriage relationship found in the novel that could be categorized into an ideal marriage were the topics to discuss. One of the significant theories of an ideal marriage used in this study was A Triangular of Love that appears in three significant components: intimacy, passion and commitment that reflected the subjective experience. Intimacy could be considered the warm component because it encompassed the feeling of comfort and tenderness in a relationship. Then, passion consisted of motivational and was considered the hot component, in that it usually included the most intense feeling. Finally, commitment involved deliberate choice to love someone and to maintain that love. It was considered the cold component (Sternberg: 1986). The research was conducted by descriptive qualitative method. The research results showed that the three points of an ideal marriage in the novel, i.e. intimacy, passion, and commitment were clearly reflected by the major characters in the novel.


2020 ◽  
Vol 500 (2) ◽  
pp. 2543-2553
Author(s):  
F D Priestley ◽  
H Chawner ◽  
M Matsuura ◽  
I De Looze ◽  
M J Barlow ◽  
...  

ABSTRACT Dust destruction by supernovae is one of the main processes removing dust from the interstellar medium (ISM). Estimates of the efficiency of this process, both theoretical and observational, typically assume a shock propagating into a homogeneous medium, whereas the ISM possesses significant substructure in reality. We self-consistently model the dust and gas properties of the shocked ISM in three supernova remnants (SNRs), using X-ray and infrared (IR) data combined with corresponding emission models. Collisional heating by gas with properties derived from X-ray observations produces dust temperatures too high to fit the far-IR fluxes from each SNR. An additional colder dust component is required, which has a minimum mass several orders of magnitude larger than that of the warm dust heated by the X-ray emitting gas. Dust-to-gas mass ratios indicate that the majority of the dust in the X-ray emitting material has been destroyed, while the fraction of surviving dust in the cold component is plausibly close to unity. As the cold component makes up virtually all the total dust mass, destruction time-scales based on homogeneous models, which cannot account for multiple phases of shocked gas and dust, may be significantly overestimating actual dust destruction efficiencies, and subsequently underestimating grain lifetimes.


2020 ◽  
Author(s):  
Stefan Noll ◽  
Holger Winkler ◽  
Oleg Goussev ◽  
Bastian Proxauf

<p>Chemiluminescent OH airglow emission dominates the nighttime radiation of the Earth's atmosphere in the near-infrared wavelength regime. It is an important indicator of the state and variability of the mesopause region at about 90 km. However, the interpretation of the line intensities suffers from uncertainties in the knowledge of the complex roto-vibrational level population distribution, which is far from local thermodynamic equilibrium (LTE). For a better understanding, we investigated these populations in detail mainly based on a high-quality high-resolution mean spectrum from the UVES echelle spectrograph at Cerro Paranal in Chile, which allowed us to measure about 1,000 individual lines including numerous resolved Λ-doublet components between 560 and 1060 nm. As the quality of the currently available sets of OH Einstein-A coefficients is not sufficient for accurate population retrievals, we derived an improved set by a semi-empirical approach, which benefited from the measurement of multiple lines with the same upper level. The resulting populations indicate a clear bimodality for each vibrational level, which is characterised by a cold component indicating the ambient temperature at the OH layer heights and a hot non-LTE component dominating high rotational levels. Our promising two-population fits allowed us to constrain the non-LTE contributions to rotational temperatures based on lines with upper states with low rotational and fixed vibrational quantum number, which are widely used to estimate temperatures in the mesopause region. The bimodality is also clearly indicated by the different population changes depending on the effective altitude of the OH emission layer. Only the cold component significantly decreases with increasing altitude. Our results will be very useful for the challenging modelling of the OH thermalisation process.</p>


2019 ◽  
Vol 488 (1) ◽  
pp. 1012-1025 ◽  
Author(s):  
A Molaeinezhad ◽  
L Zhu ◽  
J Falcón-Barroso ◽  
G van de Ven ◽  
J Méndez-Abreu ◽  
...  

ABSTRACT We construct Schwarzschild orbit-based models of NGC 7457, known as a peculiar low-mass lenticular galaxy. Our best-fitting model successfully retrieves most of the unusual kinematics behaviours of this galaxy, in which, the orbital distribution of stars is dominated by warm and hot orbits. The reconstructed surface brightness of the hot component matches fairly well the photometric bulge and the reconstructed LOSVD map of this component shows clear rotation around the major photometric axis of the galaxy. In the absence of a dominant cold component, the outer part of our model is dominated by warm orbits, representing an exponential thick disc. Our orbital analysis also confirms the existence of a counter-rotating orbital substructure in the very centre, reported in previous observational studies. By comparing our model with a variety of simulation studies, and considering the stellar kinematics and populations properties of this galaxy, we suggest that the thick disc is most likely a dynamically heated structure, formed through the interactions and accretion of satellite(s) with near-polar initial inclination. We also suggest a merger-driven process as the most plausible scenario to explain the observed and dynamically modelled properties of the bulge of NGC 7457. We conclude that both the high level of cylindrical rotation and unusually low velocity dispersion reported for the NGC 7457 have most likely external origins. Therefore, NGC 7457 could be considered as a candidate for merger-driven cylindrical rotation in the absence of a strong bar in disc galaxies.


2010 ◽  
Vol 411 (4) ◽  
pp. 2319-2335 ◽  
Author(s):  
R. F. Carswell ◽  
R. A. Jorgenson ◽  
A. M. Wolfe ◽  
M. T. Murphy

2009 ◽  
Vol 27 (4) ◽  
pp. 1431-1438 ◽  
Author(s):  
M. Yamauchi ◽  
Y. Ebihara ◽  
I. Dandouras ◽  
H. Rème

Abstract. Sources of low-energy ring current ions in the early morning sector (eastward drifting energy domain of about <5 keV) are examined using both statistical analyses and numerical tracing methods (phase-space mapping and simulation). In about 90% of Cluster perigee traversals at 02~07 local time, these low-energy ring current ions have dual ion populations: one is wedge-like energy-dispersed ions, and the other is a band-like ions over different latitudes in a narrow energy range at the upper energy threshold of the wedge-like energy-dispersed ions. Both components are most likely created during past substorm activities. Numerical tracing results strongly suggest that these two components have different sources with different temperatures and elapsed times. The band-like part most likely comes from ions with plasma sheet temperature (~1 keV), and the energy-dispersed part most likely comes from cold ions (temperature <0.1 keV). The source density of the cold component (0.2~0.5×106/m3) is slightly less than that of the hot component (0.5×106/m3), while Cluster observation shows slightly higher density for the wedge-like part than the low-energy band-like part. The hot source component also explains the observed high-energy (>10 keV) ions drifting westward after adiabatic energization in the nightside under time-varying electric field. The wedge-like part has much shorter elapsed time, i.e., less charge-exchange loss, than the band-like part.


Author(s):  
Padma Kant Shukla ◽  
Bengt Eliasson

We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser–plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.


2007 ◽  
Vol 25 (3) ◽  
pp. 769-777 ◽  
Author(s):  
M. N. Nishino ◽  
M. Fujimoto ◽  
T. Terasawa ◽  
G. Ueno ◽  
K. Maezawa ◽  
...  

Abstract. In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.


2006 ◽  
Vol 641 (1) ◽  
pp. 268-280 ◽  
Author(s):  
Jasonjot S. Kalirai ◽  
Puragra Guhathakurta ◽  
Karoline M. Gilbert ◽  
David B. Reitzel ◽  
Steven R. Majewski ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document