excitatory stimulus
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2018 ◽  
Author(s):  
Ruben Coen-Cagli ◽  
Selina S Solomon

Cortical responses to repeated presentations of a stimulus are variable. This variability is sensitive to experimental manipulations that are also known to engage divisive normalization: a widespread description of neural activity as the ratio of a numerator (the excitatory stimulus drive) and denominator (the normalization signal). Yet, we lack a framework to quantify the effects of normalization on response variability. We extended the standard normalization model, treating the numerator and denominator as stochastic quantities, and derived a method to infer the single-trial normalization strength, which cannot be measured directly. The model revealed a general reduction of response variability in macaque primary visual cortex for neurons that were more strongly normalized, and during trials in which normalization was inferred to be strong. This framework could enable a direct quantification of the impact of single-trial normalization on perceptual judgments, and can readily be applied to other sensory and non-sensory factors.


2016 ◽  
Author(s):  
Claudia Clopath ◽  
Tim P. Vogels ◽  
Robert C. Froemke ◽  
Henning Sprekeler

AbstractThe stimulus selectivity of synaptic currents in cortical neurons often shows a co-tuning of excitation and inhibition, but the mechanisms that underlie the emergence and plasticity of this co-tuning are not fully understood. Using a computational model, we show that an interaction of excitatory and inhibitory synaptic plasticity reproduces both the developmental and – when combined with a disinhibitory gate – the adult plasticity of excitatory and inhibitory receptive fields in auditory cortex. The co-tuning arises from inhibitory plasticity that balances excitation and inhibition, while excitatory stimulus selectivity can result from two different mechanisms. Inhibitory inputs with a broad stimulus tuning introduce a sliding threshold as in Bienenstock-Cooper-Munro rules, introducing an excitatory stimulus selectivity at the cost of a broader inhibitory receptive field. Alternatively, input asymmetries can be amplified by synaptic competition. The latter leaves any receptive field plasticity transient, a prediction we verify in recordings in auditory cortex.


2011 ◽  
Vol 106 (4) ◽  
pp. 1652-1661 ◽  
Author(s):  
Tanya Onushko ◽  
Allison Hyngstrom ◽  
Brian D. Schmit

After spinal cord injury (SCI), alterations in intrinsic motoneuron properties have been shown to be partly responsible for spastic reflex behaviors in human SCI. In particular, a dysregulation of voltage-dependent depolarizing persistent inward currents (PICs) may permit sustained muscle contraction after the removal of a brief excitatory stimulus. Windup, in which the motor response increases with repeated activation, is an indicator of PICs. Although windup of homonymous stretch reflexes has been shown, multijoint muscle activity is often observed following imposed limb movements and may exhibit a similar windup phenomenon. The purpose of this study was to identify and quantify windup of multijoint reflex responses to repeated imposed hip oscillations. Ten chronic SCI subjects participated in this study. A custom-built servomotor apparatus was used to oscillate the legs about the hip joint bilaterally and unilaterally from 10° of extension to 40° flexion for 10 consecutive cycles. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Consistent with a windup response, hip and knee flexion/extension and ankle plantarflexion torque and EMG responses varied according to movement cycle number. The temporal patterns of windup depended on the muscle groups that were activated, which may suggest a difference in the response of neurons in different spinal pathways. Furthermore, because windup was seen in muscles that were not being stretched, these results imply that changes in interneuronal properties are also likely to be associated with windup of spastic reflexes in human SCI.


2008 ◽  
Vol 99 (4) ◽  
pp. 2006-2011 ◽  
Author(s):  
Babak Tahvildari ◽  
Angel A. Alonso ◽  
Charles W. Bourque

Principal neurons in layer III of the rat lateral entorhinal cortex (LEC) generate a self-sustained plateau potential and persistent spiking following the application of a brief suprathreshold excitatory stimulus delivered in the presence of the muscarinic receptor agonist carbachol. This persistent activity can be terminated by application of a second excitatory stimulus, and these cells can be repeatedly toggled between on and off states by consecutive excitatory stimuli. However, the ionic mechanisms that underlie the production of on and off states in layer III LEC neurons are unknown but seem to involve activity-dependent conductances, since they can be initiated by trains of action potentials evoked by either depolarizing current pulses applied to the cell or by repetitive spiking induced by activation of excitatory synaptic inputs. In this study, we obtained intracellular recordings from rat layer III LEC neurons in vitro, and a series of pharmacological and ionic substitution experiments were performed to identify mechanisms involved in the induction and termination of persistent spiking. Our data indicate that initiation of the on state depends on spike-evoked calcium influx and subsequent activation of calcium-activated nonselective cationic current. Moreover, we show that termination of persistent firing in response to an excitatory stimulus can be blocked by tetraethylammonium or iberiotoxin, suggesting that the activation of calcium-activated potassium current mediated by large conductance calcium-activated K+ (i.e., BK) channels is required to induce the off state.


2006 ◽  
Vol 95 (3) ◽  
pp. 1356-1368 ◽  
Author(s):  
Thuc Le ◽  
Derek R. Verley ◽  
Jean-Marc Goaillard ◽  
Daniel I. Messinger ◽  
Andrew E. Christie ◽  
...  

Both vertebrate and invertebrate motor neurons can display bistable behavior in which self-sustained tonic firing results from a brief excitatory stimulus. Induction of the bistability is usually dependent on activation of intrinsic conductances located in the somatodendritic area and is commonly sensitive to action of neuromodulators. We have observed bistable behavior in a neuromuscular preparation from the foregut of the crab Cancer borealis that consists of the gastric mill 4 (gm4) muscle and the nerve that innervates it, the dorsal gastric nerve ( dgn). Nerve-evoked contractions of enhanced amplitude and long duration (>30 s) were induced by extracellular stimulation when the stimulus voltage was above a certain threshold. Intracellular and extracellular recordings showed that the large contractions were accompanied by persistent firing of the dorsal gastric (DG) motor neuron that innervates gm4. The persistent firing could be induced only by stimulating a specific region of the axon and could not be triggered by depolarizing the soma, even at current amplitudes that induced high-frequency firing of the neuron. The bistable behavior was abolished in low-Ca2+ saline or when nicardipine or flufenamic acid, blockers of L-type Ca2+ and Ca2+-activated nonselective cation currents, respectively, was applied to the axonal stimulation region of the dgn. Negative immunostaining for synapsin and synaptotagmin argued against the presence of synaptic/modulatory neuropil in the dgn. Collectively, our results suggest that bistable behavior in a motor neuron can originate in the axon and may not require the action of a locally released neuromodulator.


2002 ◽  
Vol 88 (2) ◽  
pp. 1026-1039 ◽  
Author(s):  
Steven F. Stasheff ◽  
Richard H. Masland

We recorded from on-off direction-selective ganglion cells (DS cells) in the rabbit retina to investigate in detail the inhibition that contributes to direction selectivity in these cells. Using paired stimuli moving sequentially across the cells' receptive fields in the preferred direction, we directly confirmed the prediction of Wyatt and Daw (1975) that a wave of inhibition accompanies any moving excitatory stimulus on its null side, at a fixed spatial offset. Varying the interstimulus distance, stimulus size, luminance, and speed yielded a spatiotemporal map of the strength of inhibition within this region. This “null” inhibition was maximal at an intermediate distance behind a moving stimulus: ½ to 1½ times the width of the receptive field. The strength of inhibition depended more on the distance behind the stimulus than on stimulus speed, and the inhibition often lasted 1–2 s. These spatial and temporal parameters appear to account for the known spatial frequency and velocity tuning of on-off DS cells to drifting contrast gratings. Stimuli that elicit distinct onand off responses to leading and trailing edges revealed that an excitatory response of either polarity could inhibit a subsequent response of either polarity. For example, an offresponse inhibited either an on or off response of a subsequent stimulus. This inhibition apparently is conferred by a neural element or network spanning the on andoff sublayers of the inner plexiform layer, such as a multistratified amacrine cell. Trials using a stationary flashing spot as a probe demonstrated that the total amount of inhibition conferred on the DS cell was equivalent for stimuli moving in either the null or preferred direction. Apparently the cell does not act as a classic “integrate and fire” neuron, summing all inputs at the soma. Rather, computation of stimulus direction likely involves interactions between excitatory and inhibitory inputs in local regions of the dendrites.


2001 ◽  
Vol 13 (7) ◽  
pp. 1473-1494 ◽  
Author(s):  
Carlo R. Laing ◽  
Carson C. Chow

We examine the existence and stability of spatially localized “bumps” of neuronal activity in a network of spiking neurons. Bumps have been proposed in mechanisms of visual orientation tuning, the rat head direction system, and working memory. We show that a bump solution can exist in a spiking network provided the neurons fire asynchronously within the bump. We consider a parameter regime where the bump solution is bistable with an all-off state and can be initiated with a transient excitatory stimulus. We show that the activity profile matches that of a corresponding population rate model. The bump in a spiking network can lose stability through partial synchronization to either a traveling wave or the all-off state. This can occur if the synaptic timescale is too fast through a dynamical effect or if a transient excitatory pulse is applied to the network. A bump can thus be activated and deactivated with excitatory inputs that may have physiological relevance.


1998 ◽  
Vol 80 (6) ◽  
pp. 3365-3368 ◽  
Author(s):  
Jian Zhang ◽  
Ning Tian ◽  
Malcolm M. Slaughter

Zhang, Jian, Ning Tian, and Malcolm M. Slaughter. Neuronal discriminator formed by metabotropic γ-aminobutyric acid receptors. J. Neurophysiol. 80: 3365–3368, 1998. Neurotransmitters function in one of two modes, promoting either inhibition or excitation. However, the metabotropic γ-aminobutyric acid receptor (GABABR) system can switch between these modes. In the presence of a small excitatory stimulus, the GABABR mediates a shunting inhibition that suppresses excitation. However, in the presence of a strong excitatory stimulus, the GABABR potentiates the response. This bipartite action is accomplished by linking the GABABR to two electrogenic mechanisms; one activates an outward current and another reduces an outward current. As a consequence, the GABABR serves as a discriminator that reduces the influence of weak signals while augmenting responses to strong signals. In retinal ganglion cells, this mechanism acts to promote the communication of phasic information.


1997 ◽  
Vol 78 (6) ◽  
pp. 2834-2847 ◽  
Author(s):  
Daniel C. Kadunce ◽  
J. William Vaughan ◽  
Mark T. Wallace ◽  
Gyorgy Benedek ◽  
Barry E. Stein

Kadunce, Daniel C., J. William Vaughan, Mark T. Wallace, Gyorgy Benedek, and Barry E. Stein. Mechanisms of within- and cross-modality suppression in the superior colliculus. J. Neurophysiol. 78: 2834–2847, 1997. The present studies were initiated to explore the basis for the response suppression that occurs in cat superior colliculus (SC) neurons when two spatially disparate stimuli are presented simultaneously or in close temporal proximity to one another. Of specific interest was examining the possibility that suppressive regions border the receptive fields (RFs) of unimodal and multisensory SC neurons and, when activated, degrade the neuron's responses to excitatory stimuli. Both within- and cross-modality effects were examined. An example of the former is when a response to a visual stimulus within its RF is suppressed by a second visual stimulus outside the RF. An example of the latter is when the response to a visual stimulus within the visual RF is suppressed when a stimulus from a different modality (e.g., auditory) is presented outside its (i.e., auditory) RF. Suppressive regions were found bordering visual, auditory, and somatosensory RFs. Despite significant modality-specific differences in the incidence and effectiveness of these regions, they were generally quite potent regardless of the modality. In the vast majority (85%) of cases, responses to the excitatory stimulus were degraded by ≥50% by simultaneously stimulating the suppressive region. Contrary to expectations and previous speculations, the effects of activating these suppressive regions often were quite specific. Thus powerful within-modality suppression could be demonstrated in many multisensory neurons in which cross-modality suppression could not be generated. However, the converse was not true. If an extra-RF stimulus inhibited center responses to stimuli of a different modality, it also would suppress center responses to stimuli of its own modality. Thus when cross-modality suppression was demonstrated, it was always accompanied by within-modality suppression. These observations suggest that separate mechanisms underlie within- and cross-modality suppression in the SC. Because some modality-specific tectopetal structures contain neurons with suppressive regions bordering their RFs, the within-modality suppression observed in the SC simply may reflect interactions taking place at the level of one input channel. However, the presence of modality-specific suppression at the level of one input channel would have no effect on the excitation initiated via another input channel. Given the modality-specificity of tectopetal inputs, it appears that cross-modality interactions require the convergence of two or more modality-specific inputs onto the same SC neuron and that the expression of these interactions depends on the internal circuitry of the SC. This allows a cross-modality suppressive signal to be nonspecific and to degrade any and all of the neuron's excitatory inputs.


Sign in / Sign up

Export Citation Format

Share Document