natural recombination
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chala J Turo ◽  
Wesley J Mair ◽  
Anke Martin ◽  
Simon R Ellwood ◽  
Richard Oliver ◽  
...  

The barley net blotch diseases are caused by two fungal species of the Pyrenophora genus. Specifically, spot form net blotch is caused by P. teres f. sp. maculata (Ptm) whereas net form net blotch is caused by P. teres f. sp. teres (Ptt). Ptt and Ptm show high genetic diversity in the field due to intraspecific sexual recombination and hybridisation of the two species although the latter is considered rare. Here we present occurrence of a natural Ptt/Ptm hybrid with azole fungicides resistance and its implication to barley disease management in Australia. We collected and sequenced a hybrid, 3 Ptm and 10 Ptt isolates and performed recombination analyses in the intergenic and whole genome level. Eleven out of 12 chromosomes showed significant (P < 0.05) recombination events in the intergenic regions while variable recombination rate showed significant recombination across all the chromosomes. Locus specific analyses of Cyp51A1 gene showed at least four recombination breakpoints including a point mutation that alter target protein function. This point mutation did not found in Ptt and Ptm collected prior to 2013 and 2017, respectively. Further genotyping of fourteen Ptt, 48 HR Ptm, fifteen Ptm and two P. teres isolates from barley grass using Diversity Arrays Technology markers showed that all HR Ptm isolates were clonal and not clustered with Ptt or Ptm. The result confirms occurrence of natural recombination between Ptt and Ptm in Western Australia and the HR Ptm is likely acquired azole fungicide resistance through recombination and underwent recent rapid selective sweep likely within the last decade. The use of available fungicide resistance management tactics are essential to minimise and restrict further dissemination of these adaptive HR Ptm isolates.


2021 ◽  
Author(s):  
Marion Sinclair-Waters ◽  
Nikolai Piavchenko ◽  
Annukka Ruokolainen ◽  
Tutku Aykanat ◽  
Jaakko Erkinaro ◽  
...  

Efforts to understand the genetic underpinnings of phenotypic variation often lead to the identification of candidate regions showing signals of association and/or selection. These regions may contain multiple genes and therefore validation of which genes are actually responsible for the signal is required. In Atlantic salmon (Salmo salar), a large-effect locus for maturation timing occurs in a genomic region including two candidate genes, vgll3 and akap11, but data for clearly determining which of the genes (or both) contribute to the association have been lacking. Here, we take advantage of natural recombination events detected between the two candidate genes in a salmon broodstock to reduce linkage disequilibrium at the locus, and thus enabling delineation of the influence of variation at these two genes on maturation timing. By rearing 5895 males to maturation age, of which 81% had recombinant vgll3/akap11 allelic combinations, we found that vgll3 SNP variation was strongly associated with maturation timing, whereas there was little or no association between akap11 SNP variation and maturation timing. These findings provide strong evidence supporting vgll3 as the primary candidate gene in the chromosome 25 locus for influencing maturation timing. This will help guide future research for understanding the genetic processes controlling maturation timing. This also exemplifies the utility of natural recombinants to more precisely map causal variation underlying phenotypic diversity.


2021 ◽  
pp. 1-20
Author(s):  
Piet VAN DER MEER ◽  
Geert ANGENON ◽  
Hans BERGMANS ◽  
Hans Jörg BUHK ◽  
Sam CALLEBAUT ◽  
...  

In a ruling on 25 July 2018, the Court of Justice of the European Union concluded that organisms obtained by means of techniques/methods of mutagenesis constitute GMOs in the sense of Directive 2001/18, and that organisms obtained by means of techniques/methods of directed mutagenesis are not excluded from the scope of the Directive. Following the ruling, there has been much debate about the possible wider implications of the ruling. In October 2019, the Council of the European Union requested the European Commission to submit, in light of the CJEU ruling, a study regarding the status of novel genomic techniques under Union Law. For the purpose of the study, the Commission initiated stakeholder consultations early in 2020. Those consultations focused on the technical status of novel genomic techniques. This article aims to contribute to the discussion on the legal status of organisms developed through novel genomic techniques, by offering some historical background to the negotiations on the European Union (EU) GMO Directives as well as a technical context to some of the terms in the Directive, and by analysing the ruling. The article advances that (i) the conclusion that organisms obtained by means of techniques/methods of mutagenesis constitute GMOs under the Directive means that the resulting organisms must comply with the GMO definition, ie the genetic material of the resulting organisms has been altered in a way that does not occur naturally by mating and/or natural recombination; (ii) the conclusion that organisms obtained by means of techniques/methods of directed mutagenesis were not intended to be excluded from the scope of the Directive is not inconsistent with the negotiation history of the Directive; (iii) whether an organism falls under the description of “obtained by means of techniques/methods of directed mutagenesis” depends on whether the genetic material of the resulting organisms has been altered in a way that does not occur naturally by mating and/or natural recombination. Finally, the article offers an analysis of the EU GMO definition, concluding that for an organism to be a GMO in the sense of the Directive, the technique used, as well as the genetic alterations of the resulting organism, must be considered.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Huinan Wang ◽  
Libo Zhang ◽  
Yuanbin Shang ◽  
Rongrong Tan ◽  
Mingxiang Ji ◽  
...  

Abstract Outbreaks of a new variant of porcine epidemic diarrhea virus (PEDV) at the end of 2010 have raised interest in the mutation and recombination of PEDV. A PEDV strain (CN/Liaoning25/2018) isolated from a clinical outbreak of piglet diarrhea contained a 49-bp deletion in the ORF3 gene. This deletion is considered a genetic characteristic of low pathogenic attenuated vaccine strains. However, CN/Liaoning25/2018 was highly pathogenic. Complete genome sequencing, identity analysis, phylogenetic tree construction, and recombination analysis showed that this virus was a recombinant strain containing the Spike (S) gene from the highly pathogenic CN/GDZQ/2014 strain and the remaining genomic regions from the low pathogenic vaccine isolate SQ2014. Histopathology and immunohistochemistry results confirmed that this strain was highly pathogenic and indicated that intestinal epithelial cell vacuolation was positively correlated with the intensity and density of PEDV antigens. A new natural recombination model for PEDV was identified. Our results suggest that new highly pathogenic recombinant strains in the field may be generated by recombination between low pathogenic attenuated live PEDV vaccines and pathogenic circulating PEDV strains. Our findings also highlight that the 49-bp deletion of the ORF3 gene in low pathogenic attenuated vaccine strains will no longer be a reliable standard to differentiate the classical vaccine attenuated from the field strains.


2019 ◽  
Vol 92 (3) ◽  
pp. 263-270
Author(s):  
Yongjiang Qian ◽  
Xufeng Pu ◽  
Yu Yu ◽  
Xintian Yu ◽  
Liang Kong ◽  
...  

Virology ◽  
2019 ◽  
Vol 533 ◽  
pp. 93-98 ◽  
Author(s):  
Gang Lu ◽  
Jiajun Ou ◽  
Yankuo Sun ◽  
Liyan Wu ◽  
Haibin Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document