In this study, we examined properties of silver nanoclusters, which are AgNCs stabilized by DNA oligonucleotide scaffold containing G-quadruplex-forming sequences: human telomeric (Tel22) or thrombin-binding aptamer (TBA). Thus, we obtained two fluorescent probes abbreviated as Tel22C12-AgNCs and TBAC12-AgNCs, which were characterized using absorption, circular dichroism and fluorescence spectroscopy. Both probes emit green and red fluorescence. The presence of silver nanoclusters did not destabilize the formed G-quadruplexes. The structural changes of probes upon binding K+ or Na+ ions cause quenching in their red emission. Green emission was slightly quenched only in the case of Tel22C12-AgNCs; on the contrary, for TBAC12-AgNC’s green emission, we observed an increasing fluorescence signal. Moreover, the Tel22C12-AgNCs system shows not only a higher binding preference for K+ over Na+, but it was able to monitor small changes in K+ concentrations in the buffer mimicking extracellular conditions (high content of Na+ ions). These results suggest that Tel22C12-AgNCs exhibit the potential to monitor transmembrane potassium transport.