high molecular mass
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 41)

H-INDEX

64
(FIVE YEARS 5)

2021 ◽  
Vol 22 (21) ◽  
pp. 11762
Author(s):  
Musubu Takahashi ◽  
Tomoya Fujie ◽  
Tsuyoshi Nakano ◽  
Takato Hara ◽  
Yasuhiro Shinkai ◽  
...  

Transforming growth factor-β1 (TGF-β1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-β1. Bovine aortic endothelial cells in a culture system were treated with TGF-β1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-β1, induction of RSS-producing enzymes by TGF-β1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-β1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine β-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-β1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-β1, may modulate the regulation activity in vascular endothelial cells.


2021 ◽  
Vol 22 (21) ◽  
pp. 11410
Author(s):  
Jolanta Lis-Kuberka ◽  
Paulina Kubik ◽  
Agnieszka Chrobak ◽  
Jarosław Pająk ◽  
Anna Chełmońska-Soyta ◽  
...  

The diagnosis of endometriosis and fertility disorders is difficult; therefore, it is necessary to look for reliable biomarkers. Analysis of the molecular status of fibronectin as a key player in repair and wound healing processes, as well as in coagulation and fibrinolysis pathways, is justified. ELISA and SDS-agarose immunoblotting were applied to determine the fibronectin concentration and presence and occurrence of soluble FN-fibrin complexes in the blood plasma of women with endometriosis (n = 38), fertility disorders (n = 28) and the healthy group (n = 25). The concentration of fibronectin in the blood plasma of women with endometriosis (292.61 ± 96.17 mg/L) and fertility disorders (287.53 ± 122.68 mg/L) was significantly higher than in the normal group (226.55 ± 91.98 mg/L). The presence of FN-fibrin complexes of 750, 1000, 1300, 1600 and 1900 kDa in the plasma of women with endometriosis and fertility disorders was shown. The presence of FN-fibrin complexes with a molecular mass of more than 1300 kDa in women with endometriosis and infertility and the complete absence of these complexes in healthy women may indicate an increased and chronic activation of coagulation mechanisms in these patients. The presence of complexes of high molecular mass may be one of the biomarkers of fertility disorders in women.


2021 ◽  
pp. 523-528
Author(s):  
Radosław Gruska ◽  
Aneta Antczak-Chrobot ◽  
Agnieszka Sobala ◽  
Maciej Wojtczak

The presence of dextran originating from frost-damaged or degraded beet is highly detrimental during beet sugar manufacture, because they cause difficulties in filtering the carbonatation juice. In this paper the impact of exopolysaccharides on the viscosity of low sucrose content juices including: raw juice, juice after the 1st filtration and thin juice were analyzed. Studies have shown that high molecular mass exopolysaccharides have a stronger effect on the juice viscosity than low molecular mass exopolysaccharides. However, the dynamic viscosity of technical sugar solutions (raw juice or thin juice) with exopolysaccharides at a content of up to 0.5 g/kg, is lower than the viscosity of pure sugar solutions having the same refractometric dry substance content (RDS).


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 205
Author(s):  
Tomas Bertok ◽  
Aniko Bertokova ◽  
Stefania Hroncekova ◽  
Erika Chocholova ◽  
Natalia Svecova ◽  
...  

The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 453
Author(s):  
Sebastian Estrada-Gómez ◽  
Leidy Johana Vargas-Muñoz ◽  
Cesar Segura Latorre ◽  
Monica Maria Saldarriaga-Cordoba ◽  
Claudia Marcela Arenas-Gómez

Nowadays, spider venom research focuses on the neurotoxic activity of small peptides. In this study, we investigated high-molecular-mass compounds that have either enzymatic activity or housekeeping functions present in either the venom gland or venom of Pamphobeteus verdolaga. We used proteomic and transcriptomic-assisted approaches to recognize the proteins sequences related to high-molecular-mass compounds present in either venom gland or venom. We report the amino acid sequences (partial or complete) of 45 high-molecular-mass compounds detected by transcriptomics showing similarity to other proteins with either enzymatic activity (i.e., phospholipases A2, kunitz-type, hyaluronidases, and sphingomyelinase D) or housekeeping functions involved in the signaling process, glucanotransferase function, and beta-N-acetylglucosaminidase activity. MS/MS analysis showed fragments exhibiting a resemblance similarity with different sequences detected by transcriptomics corresponding to sphingomyelinase D, hyaluronidase, lycotoxins, cysteine-rich secretory proteins, and kunitz-type serine protease inhibitors, among others. Additionally, we report a probably new protein sequence corresponding to the lycotoxin family detected by transcriptomics. The phylogeny analysis suggested that P. verdolaga includes a basal protein that underwent a duplication event that gave origin to the lycotoxin proteins reported for Lycosa sp. This approach allows proposing an evolutionary relationship of high-molecular-mass proteins among P. verdolaga and other spider species.


2021 ◽  
Author(s):  
Luchang Zhu ◽  
Prasanti Yerramilli ◽  
Layne Pruitt ◽  
Abhishek Mishra ◽  
Randall J. Olsen ◽  
...  

High-molecular-mass penicillin-binding proteins (PBPs) are enzymes that catalyze the biosynthesis of bacterial cell wall peptidoglycan. The Gram-positive bacterial pathogen Streptococcus agalactiae (group B streptococcus , or GBS) produces five high-molecular-mass PBPs, namely, PBP1A, PBP1B, PBP2A, PBP2B, and PBP2X. Among these, only PBP2X is essential for cell viability, whereas the other four PBPs are individually dispensable. The biological function of the four non-essential PBPs is poorly characterized in GBS. We deleted the pbp1a , pbp1b , pbp2a , and pbp2b genes individually from a genetically well-characterized serotype V GBS strain, and studied the phenotypes of the four isogenic mutant strains. Compared to the wild-type parental strain (i) none of the pbp isogenic mutant strains had a significant growth defect in THY rich medium, (ii) isogenic mutant strains Δ pbp1a and Δ pbp1b had significantly increased susceptibility to penicillin and ampicillin, and (iii) isogenic mutant strains Δ pbp1a and Δ pbp2b had significantly longer chain lengths. Using saturated transposon mutagenesis and transposon insertion site sequencing, we determined genes essential for the viability of wild-type GBS strain and each of the four isogenic pbp deletion mutant strains in THY rich medium. The pbp1a gene is essential for cell viability in the pbp2b deletion background. Reciprocally, pbp2b is essential in the pbp1a deletion background. Moreover, the gene encoding RodA, a peptidoglycan polymerase that works in conjunction with PBP2B, is also essential in the pbp1a deletion background. Together, our results suggest functional overlap between PBP1A and PBP2B-RodA complex in GBS cell wall peptidoglycan biosynthesis. IMPORTANCE High-molecular-mass penicillin-binding proteins (HMM-PBPs) are enzymes required for bacterial cell-wall biosynthesis. Bacterial pathogen group B streptococcus (GBS) produces five distinct HMM-PBPs. The biological functions of these proteins are not well characterized in GBS. In this study, we performed a comprehensive deletion analysis of genes encoding HMM-PBPs in GBS. We found that deleting certain PBP-encoding genes altered bacterial susceptibility to beta-lactam antibiotics, cell morphology, and the essentiality of other enzymes involved in cell-wall peptidoglycan synthesis. The results of our study shed new light on the biological functions of PBPs in GBS.


2021 ◽  
Author(s):  
Bartosz Adamczyk

AbstractAlthough there is increasing awareness of the potential role of organic N compounds (ON) in plant nutrition, its implications for soil organic matter (SOM) stabilization have hardly been discussed yet. The aim of this paper is therefore to gather the newest insights into plant use of high molecular mass organic N, its effect on root growth and anatomy, and finally, to discuss the implications of plant use of organic N for SOM stabilization. I propose that modified root growth due to the uptake of ON provides greater root and root-associated microbe input, leading to enhanced SOM stabilization. Finally, I discuss the role of the proposed framework in different ecosystems, and I encourage future studies combining plant N nutrition and SOM stabilization.


2021 ◽  
Vol 5 (1) ◽  
pp. 25-29
Author(s):  
N. N. Silivontchik ◽  
◽  
A. I. Lednik ◽  
O. P. Levchuk ◽  
L. I. Plotnikova ◽  
...  

Measurement of serum enzyme activity is one of the most common laboratory tests. Increased activity may be caused by abnormal enzymes with a high molecular mass, the so-called macroenzymes. Macroenzymes may be seen in healthy subjects, but can also be related to disease. Macro-aspartate aminotransferase (macro-AST) is a macroenzyme that results from an enzymatic complex consisting of AST linked to serum immunoglobulin (IgA, IgG or both). MacroAST persistence is a rare benign condition. Macro-AST is generally characterized by increased serum AST activity. The article contains analysis of literature data on patients with macro-AST.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2804
Author(s):  
Miriam Trigo-López ◽  
José A. Reglero Ruiz ◽  
Patricia D. Peredo ◽  
Aranzazu Mendía ◽  
Asunción Muñoz ◽  
...  

We describe the synthesis and characterization of three novel aromatic diamines containing oxyethylene sequences of different lengths. These diamines were polymerized using the low-temperature solution polycondensation method with isophthaloyl chloride (IPC), terepthaloyl chloride (TPC), [1,1’-biphenyl]-4,4’-dicarbonyl dichloride (BDC), and 4,4′-oxybis(benzoyl chloride) (OBE), obtaining twelve poly(ether amide)s with short segments of polydisperse polyethyleneoxide (PEO) sequences in the polymer backbone. These polymers show reasonably high molecular mass materials (Mw > 12,000), and the relationship between their structure and properties has been carefully studied. Compared with conventional polyamides containing monodisperse PEO sequences, the polydispersity of the PEO segments within the structural units exerts a significant influence on the crystallinity, flexibility, solubility, and the thermal properties of the polymers. For instance, the all-para oriented polyamides (TPCP-A), with an average number of 8.2 ethylenoxide units per structural unit can be transformed conventionally (Tm = 259 °C) in comparison with thermally untransformable polymer with 2 ethylenoxide units (Tm = 425 °C).


Sign in / Sign up

Export Citation Format

Share Document