A new calculus on fractal curves, such as the von Koch curve, is formulated. We define a Riemann-like integral along a fractal curve F, called Fα-integral, where α is the dimension of F. A derivative along the fractal curve called Fα-derivative, is also defined. The mass function, a measure-like algorithmic quantity on the curves, plays a central role in the formulation. An appropriate algorithm to calculate the mass function is presented to emphasize its algorithmic aspect. Several aspects of this calculus retain much of the simplicity of ordinary calculus. We establish a conjugacy between this calculus and ordinary calculus on the real line. The Fα-integral and Fα-derivative are shown to be conjugate to the Riemann integral and ordinary derivative respectively. In fact, they can thus be evalutated using the corresponding operators in ordinary calculus and conjugacy. Sobolev Spaces are constructed on F, and Fα-differentiability is generalized. Finally we touch upon an example of absorption along fractal paths, to illustrate the utility of the framework in model making.