infill sampling
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Chen ◽  
Jiaxin Liu ◽  
Pingfei Xu

AbstractOne of the key issues that affect the optimization effect of the efficient global optimization (EGO) algorithm is to determine the infill sampling criterion. Therefore, this paper compares the common efficient parallel infill sampling criterion. In addition, the pseudo-expected improvement (EI) criterion is introduced to minimizing the predicted (MP) criterion and the probability of improvement (PI) criterion, which helps to improve the problem of MP criterion that is easy to fall into local optimum. An adaptive distance function is proposed, which is used to avoid the concentration problem of update points and also improves the global search ability of the infill sampling criterion. Seven test problems were used to evaluate these criteria to verify the effectiveness of these methods. The results show that the pseudo method is also applicable to PI and MP criteria. The DMP and PEI criteria are the most efficient and robust. The actual engineering optimization problems can more directly show the effects of these methods. So these criteria are applied to the inverse design of RAE2822 airfoil. The results show the criterion including the MP has higher optimization efficiency.


2021 ◽  
Vol 13 (19) ◽  
pp. 10645
Author(s):  
Xiaodong Song ◽  
Mingyang Li ◽  
Zhitao Li ◽  
Fang Liu

Public traffic has a great influence, especially with the background of COVID-19. Solving simulation-based optimization (SO) problem is efficient to study how to improve the performance of public traffic. Global optimization based on Kriging (KGO) is an efficient method for SO; to this end, this paper proposes a Kriging-based global optimization using multi-point infill sampling criterion. This method uses an infill sampling criterion which obtains multiple new design points to update the Kriging model through solving the constructed multi-objective optimization problem in each iteration. Then, the typical low-dimensional and high-dimensional nonlinear functions, and a SO based on 445 bus line in Beijing city, are employed to test the performance of our algorithm. Moreover, compared with the KGO based on the famous single-point expected improvement (EI) criterion and the particle swarm algorithm (PSO), our method can obtain better solutions in the same amount or less time. Therefore, the proposed algorithm expresses better optimization performance, and may be more suitable for solving the tricky and expensive simulation problems in real-world traffic problems.


2021 ◽  
Vol 2030 (1) ◽  
pp. 012067
Author(s):  
Tangtao Feng ◽  
Chen Cong ◽  
Ping Song ◽  
Yongquan Li ◽  
Yi Liao ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1631
Author(s):  
Kittisak Chaiyotha ◽  
Tipaluck Krityakierne

Engineering optimization problems often involve computationally expensive black-box simulations of underlying physical phenomena. This paper compares the performance of four constrained optimization algorithms relying on a Gaussian process model and an infill sampling criterion under the framework of Bayesian optimization. The four infill sampling criteria include expected feasible improvement (EFI), constrained expected improvement (CEI), stepwise uncertainty reduction (SUR), and augmented Lagrangian (AL). Numerical tests were rigorously performed on a benchmark set consisting of nine constrained optimization problems with features commonly found in engineering, as well as a constrained structural engineering design optimization problem. Based upon several measures including statistical analysis, our results suggest that, overall, the EFI and CEI algorithms are significantly more efficient and robust than the other two methods, in the sense of providing the most improvement within a very limited number of objective and constraint function evaluations, and also in the number of trials for which a feasible solution could be located.


2020 ◽  
Vol 62 (1) ◽  
pp. 353-373 ◽  
Author(s):  
Peng Hao ◽  
Shaojun Feng ◽  
Yuwei Li ◽  
Bo Wang ◽  
Huihan Chen

Sign in / Sign up

Export Citation Format

Share Document