AbstractDynamic multiobjective optimization problems (DMOPs) require the evolutionary algorithms that can track the moving Pareto-optimal fronts efficiently. This paper presents a dynamic multiobjective evolutionary framework (DMOEF-MS), which adopts a novel multipopulation structure and Steffensen’s method to solve DMOPs. In DMOEF-MS, only one population deals with the original DMOP, while the others focus on single-objective problems that are generated by the weighted summation of the original DMOP. Then, Steffensen’s method is used to control the evolving process in two ways: prediction and diversity-maintenance. Particularly, the prediction strategy is devised to predict the next promising positions for the individuals that handle single-objective problems, and the diversity-maintenance strategy is used to increase population diversity before the environment changes and reinitialize the multiple populations after the environment changes. This paper gives a comprehensive comparison of DMOEF-MS with some state-of-the-art DMOEAs on 14 DMOPs and the experimental results demonstrate the effectiveness of the proposed algorithm.