distributary channel
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 9 ◽  
Author(s):  
Shilin Wang ◽  
Hu Li ◽  
Lifei Lin ◽  
Shuai Yin

Structural fractures have a significant control effect on the large-scale accumulation of hydrocarbons in the Yanchang Formation. Previous studies have affirmed the important role of fractures in hydrocarbon accumulations in strongly deformed zones. However, for low-amplitude structural areas, the degree of fracture development is relatively low, and their control on sweet spots of hydrocarbons has not yet formed a unified understanding. In this paper, taking the Upper Triassic Yanchang Formation in the western Ordos Basin as an example, the development characteristics, prediction method, and the distribution of fractures in tight sandstone reservoirs in low-amplitude structural areas have been systematically studied using a large number of cores, thin sections, paleomagnetism, FMI logging, acoustic emission, productivity data, and finite element method. The research results showed that the Yanchang Formation in the study area mainly develop high-angle and vertical fractures, which were formed by regional tectonic shearing. Fractures are mainly developed in the fine-grained and ultra-fine-grained sandstones of the distributary channel and estuary bar microfacies, while the fractures in the medium-grained sandstones of the distributary channel and the mudstones of the distributary bay are relatively underdeveloped. The core fractures and micro-fractures of the Yanchang Formation all have the regional distribution characteristics, and the fracture strikes are mainly between NE50° and NE 70°. Moreover, the finite element method was used to predict the fractures in the target layer, and the prediction results are consistent with the actual distribution results of the fractures. The coupling analysis of fractures and tight oil sandstone distribution showed that the existence of fractures provided conditions for the accumulation of hydrocarbons in the Yanchang Formation. The confluence and turning areas of the river channels were repeatedly scoured by river water, and the rocks were brittle and easy to form fractures. The thickness of the fractured sandstone in these areas is usually greater than 0.4 m. Moderately developed fracture zones are prone to form hydrocarbon accumulation “sweet spots,” and the fracture indexes of these areas are usually distributed between 0.8 and 1.2. However, when the fracture index exceeds 1.2, over-developed fractures are unfavorable for the accumulation of hydrocarbons.


Sedimentology ◽  
2021 ◽  
Author(s):  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Thi Kim Oanh Ta ◽  
Van Lap Nguyen ◽  
Andrew D. La Croix ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhenfeng Yu ◽  
Jindong Yang ◽  
Xinya Song ◽  
Jin Qiao

By taking the third member of the Dongying Formation in the Cha71 fault block of the Chaheji oilfield as an example, the single sand body of the deltaic front underwater distributary channel is meticulously depicted by using the data of well logging and performance production. Portrays the vertical separation model, total lateral separation type, vertical type, lateral superposition type, 4 types of single sand body vertical superimposed and bay type, bank contact between docking, instead of four kinds of single sand body lateral contact type, and summarizes its logging facies identification. The quantitative prediction model of the single sand body was established, the characteristics of single sand body plane distribution were summarized, and the identification of the oil-water layer and the lower limit of reservoir effective thickness were studied. And we got the conclusion that based on the fine characterization of the single sand body and the lower limit standard of effective reservoir thickness, the distribution range of the effective reservoir and connecting unit is determined. Finally, the connectivity of the connecting unit is verified by dynamic data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tim R. McHargue ◽  
David M. Hodgson ◽  
Eitan Shelef

Lobate deposits in deep-water settings are diverse in their depositional architecture but this diversity is under-represented in the literature. Diverse architectures result from multiple factors including source material, basin margin physiography, transport pathway, and depositional setting. In this contribution, we emphasize the impact of differing source materials related to differing delivery mechanisms and their influence on architecture, which is an important consideration in source-to-sink studies. Three well imaged subsurface lobate deposits are described that display three markedly different morphologies. All three lobate examples, two from intraslope settings offshore Nigeria and one from a basin-floor setting offshore Indonesia, are buried by less than 150 m of muddy sediment and are imaged with high resolution 3D reflection seismic data of similar quality and resolution. Distinctively different distributary channel patterns are present in two of the examples, and no comparable distributaries are imaged in a third example. Distributary channels are emphasized because they are objectively recognized and because they often represent elements of elevated fluid content within buried lobate deposits and thus influence permeability structure. We speculate that the different distributary channel patterns documented here resulted from different processes linked to source materials: 1) a lobate deposit that is pervasively channelized by many distributaries that have branched at numerous points is interpreted to result from comparatively mud-rich, stratified, turbulent flows; 2) an absence of distributaries in a lobate deposit is interpreted to result from collapse of mud-poor, turbulent flows remobilized from littoral drift; and 3) a lobate deposit with only a few, long, straight distributaries with few branching points is interpreted to be dominated by highly viscous flows (i.e., debris flows). We propose a conceptual model that illustrates the relationship between the proportion of mud in contributing flows and the relative size and runout distance of lobate deposits. We conclude that reconciling 3D seismic morphologies with outcrop observations of channels, scours, and amalgamation zones, and simple application of hierarchical schemes, is problematic. Furthermore, when characterizing unconfined deep-water deposits in the subsurface, multiple models with significant differences in predicted permeability structure should be considered.


Author(s):  
Jingzhe Li ◽  
Zhifeng Sun ◽  
Huaiqiang Ren ◽  
Liang Gong ◽  
Tanglu Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Thi Kim Oanh Ta ◽  
Van Lap Nguyen ◽  
Toru Tamura ◽  
...  

AbstractThe Ba Lai distributary channel of the Mekong River Delta was abandoned and infilled with sediment during the Late Holocene, providing a unique opportunity to investigate the sediment fill, timing and mechanisms of channel abandonment in tide-dominated deltaic systems. Based on analysis and age dating of four sediment cores, we show that the channel was active since 2.6 ka and was abandoned at 0.7 ka as marked by the abrupt disappearance of the sand fraction and increase in organic matter and sediment accumulation rate. We estimate that the channel might have been filled in a time range of 45–263 years after detachment from the deltaic network, with sediment accumulation rates of centimetres to decimetres per year, rapidly storing approximately 600 Mt of organic-rich mud. We suggest that the channel was abandoned due to a sediment buildup favoured by an increase in regional sediment supply to the delta. This study highlights that mechanisms for abandonment and infilling of tide-dominated deltaic channels do not entirely fit widely used models developed for fluvial-dominated environments. Their abandonment might be driven by autogenic factors related to the river-tidal and deltaic dynamics and favoured by allogenic factors (e.g., human impact and/or climate change).


2021 ◽  
pp. 1-54
Author(s):  
Xiaofei Shang ◽  
Meng Li ◽  
Taizhong Duan

The Xujiahe Formation of Late Triassic in the Western Sichuan Depression contains abundant gas reservoirs. Influenced by the thrust tectonic movement of foreland basin, the fluvial-delta sedimentary system supplied by multiple provenances formed the Xu2 Formation of the Xinchang area. We used detailed description of drilling wells and cores to define the sequence stratigraphic framework and sand body types. We used stratal slices through the seismic volume to map the evolution of the sedimentary system and the sand body distribution. The results show that the Xu2 Formation exhibits a complete long-term base-level cycle, and there are six sand body deposit types: distributary channel, inter-channel, subaqueous distributary channel, inter-distributary bay, mouth bar and sheet sand. Stratal slices through the seismic volume at different levels map the spatial variation of sand and mudstone, which we use to construct a sedimentary filling evolution model. This model indicates that during the time of deposition of the Lower Sub-member the main provenance supply came from the NW direction, resulting in the sand bodies mainly deposited in the west. During the time of depositon of the Central Sub-member, sediment supply was large and came from both the NW and NE directions, resulting in large, laterally extensive, thick sands. During the time of deposition of the Upper Sub-member, sediment supply was from the NE direction, with the sand bodies more developed in the east. The flow direction of the channels indicate that they migrated from northwest to northeast. There are differences in channel energy, sedimentary characteristics and reservoir physical properties in the three Sub-members, which cause differences in natural gas productivity of Xu2 Formation. We believe that detailed mapping the spatial distribution of sedimentary systems can provide critical guidance to not only explore, but also to develop in high-quality oil and gas reservoirs like Xu2 Foramtion.


2021 ◽  
Vol 54 (1B) ◽  
pp. 43-56
Author(s):  
Zainab Amer

Carbonate-clastic succession which includes the Shu'aiba, Nahr Umr and Mauddud formations are representing a part of the Barremian-Aptian Sequence (Wasi'a Group). The present study includes three boreholes (Ba-1, 4 and 8) within the Balad Oil Field. The study area is located in central Iraq. This field represents a subsurface anticline with a northwest to southeast direction axis within the Mesopotamian Zone. Eight types of microfacies were recognized in the succession of the Mauddud and Shu’aiba formations. These microfacies represent shallow open marine, restricted and semi-restricted, reef - back reef, deep open marine and basinal depositional environments. While Nahr Umr Formation includes two successions, the first is the upper unit which is characterized by shale dominated rocks and the second is the lower unit which is characterized by sand-dominated rocks. Four major lithofacies were recognized in these two successions, they represent four depositional environments which are distributary channel, bay fill, delta plain and prodelta. The Albian-Aptian sequence was deposited during three cycles overlying the regional unconformity below the Shu’aiba Formation, the Zubair Formation, and ended with local unconformity with the Ahmadi Formation. The first stage is represented by deposition of Shu’aiba Formation during the sea-level rise after regression stage during the Zubair deposition which deposition in delta association facies. The second stage was showed a regressed of deposit the delta system above the shallow open marine of the Shu’aiba Formation, where the succession became characterized by mud-dominated rock with fissile and organic material. The third depositional stage is represented by the continuation of sea-level rise. This transgression leads to the building of carbonate ramp of the Mauddud Formation above the deltaic system of Nahr Umr Formation with a conformable surface. The Mauddud depositional stage was represented by two cycles of transgression succession, where appeared deepening upward in both cycles. The unconformity between these formations have been determined by observing the glauconite mineral and detected by log response in depth 2880m in well Ba-1.


Sign in / Sign up

Export Citation Format

Share Document