signal overlap
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick J. Hart ◽  
Thomas Ibanez ◽  
Kristina Paxton ◽  
Grace Tredinnick ◽  
Esther Sebastián-González ◽  
...  

When acoustic signals sent from individuals overlap in frequency and time, acoustic interference and signal masking may occur. Under the acoustic niche hypothesis (ANH), signaling behavior has evolved to partition acoustic space and minimize overlap with other calling individuals through selection on signal structure and/or the sender’s ability to adjust the timing of signals. Alternately, under the acoustic clustering hypothesis, there is potential benefit to convergence and synchronization of the structural or temporal characteristics of signals in the avian community, and organisms produce signals that overlap more than would be expected by chance. Interactive communication networks may also occur, where species living together are more likely to have songs with convergent spectral and or temporal characteristics. In this study, we examine the fine-scale use of acoustic space in montane tropical wet forest bird communities in Costa Rica and Hawai‘i. At multiple recording stations in each community, we identified the species associated with each recorded signal, measured observed signal overlap, and used null models to generate random distributions of expected signal overlap. We then compared observed vs. expected signal overlap to test predictions of the acoustic niche and acoustic clustering hypotheses. We found a high degree of overlap in the signal characteristics (frequency range) of species in both Costa Rica and Hawai‘i, however, as predicted under ANH, species significantly reduced observed overlap relative to the random distribution through temporal partitioning. There was little support for acoustic clustering or the prediction of the network hypothesis that species segregate across the landscape based on the frequency range of their vocalizations. These findings constitute strong support that there is competition for acoustic space in these signaling communities, and this has resulted primarily in temporal partitioning of the soundscape.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5125
Author(s):  
Pauline Stark ◽  
Caroline Zab ◽  
Andrea Porzel ◽  
Katrin Franke ◽  
Paride Rizzo ◽  
...  

1H-NMR is a very reproducible spectroscopic method and, therefore, a powerful tool for the metabolomic analysis of biological samples. However, due to the high complexity of natural samples, such as plant extracts, the evaluation of spectra is difficult because of signal overlap. The new NMR “Pure Shift” methods improve spectral resolution by suppressing homonuclear coupling and turning multiplets into singlets. The PSYCHE (Pure Shift yielded by Chirp excitation) and the Zangger–Sterk pulse sequence were tested. The parameters of the more suitable PSYCHE experiment were optimized, and the extracts of 21 Hypericum species were measured. Different evaluation criteria were used to compare the suitability of the PSYCHE experiment with conventional 1H-NMR. The relationship between the integral of a signal and the related bin value established by linear regression demonstrates an equal representation of the integrals in binned PSYCHE spectra compared to conventional 1H-NMR. Using multivariate data analysis based on both techniques reveals comparable results. The obtained data demonstrate that Pure Shift spectra can support the evaluation of conventional 1H-NMR experiments.


2020 ◽  
Vol 28 (12) ◽  
pp. 18440
Author(s):  
Md Asif Iqbal ◽  
Gabriele Di Rosa ◽  
Lukasz Krzczanowicz ◽  
Ian Phillips ◽  
Paul Harper ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1529
Author(s):  
Rok Tavčar ◽  
Janko Drnovšek ◽  
Jovan Bojkovski ◽  
Samo Beguš

When designing a single tube practical acoustic thermometer (PAT), certain considerations should be addressed for optimal performance. This paper is concerned with the main issues involved in building a reliable PAT. It has to be emphasised that a PAT measures the ratio of the time delay between the single temperature calibration point (ice point) and any other temperature. Here, we present different models of the speed of sound in tubes, including the effects of real gases and an error analysis of the most accurate model with a Monte Carlo simulation. Additionally, we introduce the problem of acoustic signal overlap and some possible solutions, one of which is acoustic signal cancellation, which aims to eliminate the unwanted parts of an acoustic signal, and another is to optimize the tube length for the parameters of the gas used and specific temperature range.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 113931-113941 ◽  
Author(s):  
Constantine A. Kyriakopoulos ◽  
Petros Nicopolitidis ◽  
Georgios I. Papadimitriou ◽  
Emmanouel Varvarigos

2018 ◽  
Author(s):  
Kelly J. Gallagher ◽  
Michael Palasser ◽  
Sam Hughes ◽  
C. Logan Mackay ◽  
David P. A. Kilgour ◽  
...  

<div>Top-down mass spectrometry has become an important technique for the identification of proteins and characterisation of chemical and posttranslational modifications. However, as the molecular mass of proteins increases intact mass determination and top-down fragmentation efficiency become more challenging due to the partitioning of the mass spectral signal into many isotopic peaks. In large proteins, this results in reduced sensitivity and increased spectral complexity and signal overlap. This phenomenon is a consequence of the natural isotopic heterogeneity of the elements which comprise proteins (notably 13C). Here we present a bacterial recombinant expression system for the production of proteins depleted in 13C and 15N and use this strategy to prepare a range of isotopically depleted proteins. High resolution MS of isotope depleted proteins reveal dramatically reduced isotope distributions, which results in increases in sensitivity and deceased spectral complexity. We demonstrate that the monoisotopic signal is observed in mass spectra of proteins up to ~50 kDa. This allows confident assignment of accurate molecular mass, and facile detection of low mass modifications (such as deamidation). We outline the benefits of this isotope depletion strategy for top-down fragmentation. The reduced spectral complexity alleviates problems of signal overlap; the presence of monoisotopic signals allow more accurate assignment of fragment ions; and the dramatic increase in single-to-noise ratio (up to 7-fold increases) permits vastly reduced data acquisition times. Together, these compounding benefits allow the assignment of ca. 3-fold more fragment ions than analysis of proteins with natural isotopic abundances. Thus, more comprehensive sequence coverage can be achieved; we demonstrate near single amino-acid resolution of the 29 kDa protein carbonic anhydrase from a single top-down MS experiment. Finally, we demonstrate that the ID-MS strategy allows far greater sequence coverage to be obtained in time limited top-down data acquisitions – highlighting potential advantages for top-down LC-MS/MS workflows and top-down proteomics. </div><div><br></div>


2018 ◽  
Author(s):  
Kelly J. Gallagher ◽  
Michael Palasser ◽  
Sam Hughes ◽  
C. Logan Mackay ◽  
David P. A. Kilgour ◽  
...  

<div>Top-down mass spectrometry has become an important technique for the identification of proteins and characterisation of chemical and posttranslational modifications. However, as the molecular mass of proteins increases intact mass determination and top-down fragmentation efficiency become more challenging due to the partitioning of the mass spectral signal into many isotopic peaks. In large proteins, this results in reduced sensitivity and increased spectral complexity and signal overlap. This phenomenon is a consequence of the natural isotopic heterogeneity of the elements which comprise proteins (notably 13C). Here we present a bacterial recombinant expression system for the production of proteins depleted in 13C and 15N and use this strategy to prepare a range of isotopically depleted proteins. High resolution MS of isotope depleted proteins reveal dramatically reduced isotope distributions, which results in increases in sensitivity and deceased spectral complexity. We demonstrate that the monoisotopic signal is observed in mass spectra of proteins up to ~50 kDa. This allows confident assignment of accurate molecular mass, and facile detection of low mass modifications (such as deamidation). We outline the benefits of this isotope depletion strategy for top-down fragmentation. The reduced spectral complexity alleviates problems of signal overlap; the presence of monoisotopic signals allow more accurate assignment of fragment ions; and the dramatic increase in single-to-noise ratio (up to 7-fold increases) permits vastly reduced data acquisition times. Together, these compounding benefits allow the assignment of ca. 3-fold more fragment ions than analysis of proteins with natural isotopic abundances. Thus, more comprehensive sequence coverage can be achieved; we demonstrate near single amino-acid resolution of the 29 kDa protein carbonic anhydrase from a single top-down MS experiment. Finally, we demonstrate that the ID-MS strategy allows far greater sequence coverage to be obtained in time limited top-down data acquisitions – highlighting potential advantages for top-down LC-MS/MS workflows and top-down proteomics. </div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document