bessel process
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Nicole Hufnagel ◽  
Jeannette H. C. Woerner

AbstractIn this paper we derive martingale estimating functions for the dimensionality parameter of a Bessel process based on the eigenfunctions of the diffusion operator. Since a Bessel process is non-ergodic and the theory of martingale estimating functions is developed for ergodic diffusions, we use the space-time transformation of the Bessel process and formulate our results for a modified Bessel process. We deduce consistency, asymptotic normality and discuss optimality. It turns out that the martingale estimating function based of the first eigenfunction of the modified Bessel process coincides with the linear martingale estimating function for the Cox Ingersoll Ross process. Furthermore, our results may also be applied to estimating the multiplicity parameter of a one-dimensional Dunkl process and some related polynomial processes.


Author(s):  
Georgiy Shevchenko ◽  
Dmytro Zatula

We consider a fractionally integrated Bessel process defined by Y s δ , H = ∫ 0 ∞ ( u H − ( 1 / 2 ) − ( u − s ) + H − ( 1 / 2 ) ) d X u δ , where X δ is the Bessel process of dimension δ  > 2. We discuss the relation of this process to the fractional Brownian motion at its maximum, study the basic properties of the process and prove its Hölder continuity.


2021 ◽  
Vol 41 (4) ◽  
pp. 509-537
Author(s):  
Yuji Hamana ◽  
Ryo Kaikura ◽  
Kosuke Shinozaki

We study a precise asymptotic behavior of the tail probability of the first hitting time of the Bessel process. We deduce the order of the third term and decide the explicit form of its coefficient.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xichao Sun ◽  
Rui Guo ◽  
Ming Li

Let B = B t 1 , … , B t d t ≥ 0 be a d -dimensional bifractional Brownian motion and R t = B t 1 2 + ⋯ + B t d 2 be the bifractional Bessel process with the index 2 HK ≥ 1 . The Itô formula for the bifractional Brownian motion leads to the equation R t = ∑ i = 1 d ∫ 0 t B s i / R s d B s i + HK d − 1 ∫ 0 t s 2 HK − 1 / R s d s . In the Brownian motion case K = 1 and H = 1 / 2 , X t ≔ ∑ i = 1 d ∫ 0 t B s i / R s d B s i ,   d ≥ 1 is a Brownian motion by Lévy’s characterization theorem. In this paper, we prove that process X t is not a bifractional Brownian motion unless K = 1 and H = 1 / 2 . We also study some other properties and their application of this stochastic process.


2020 ◽  
Vol 60 (4) ◽  
pp. 482-493
Author(s):  
Jacek Jakubowski ◽  
Maciej Wiśniewolski

2020 ◽  
Vol 50 (2) ◽  
pp. 381-417
Author(s):  
Kevin Fergusson

AbstractVariable annuities are products offered by pension funds and life offices that provide periodic future payments to the investor and often have ancillary benefits that guarantee survival benefits or sums insured on death. This paper extends the benchmark approach to value and hedge long-dated variable annuities using a combination of cash, bonds and equities under a variety of market models, allowing for dependence between financial and insurance markets. Under a simplified case of independence, the results show that when the discounted index is modelled as a time-transformed squared Bessel process, less-expensive valuation and reserving is achieved regardless of the short rate model or the mortality model.


2019 ◽  
Vol 487 (3) ◽  
pp. 238-241
Author(s):  
V. I. Piterbarg ◽  
I. V. Rodionov

A high excursion probability for the modulus of a Gaussian vector process with independent identically distributed components is evaluated. It is assumed that the components have means zero and variances reaching its absolute maximum at a single point of the considered time interval. An important example of such processes is the Bessel process.


2019 ◽  
Vol 100 (1) ◽  
pp. 346-348
Author(s):  
V. I. Piterbarg ◽  
I. V. Rodionov
Keyword(s):  

2019 ◽  
Vol 145 ◽  
pp. 96-102 ◽  
Author(s):  
Larbi Alili ◽  
Andrew Aylwin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document