lauryl gallate
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Lijun Guan ◽  
Kunlun Wang ◽  
Yang Gao ◽  
Jialei Li ◽  
Song Yan ◽  
...  

Tannases are a family of esterases that catalyze the hydrolysis of ester and depside bonds present in hydrolyzable tannins to release gallic acid. Here, a novel tannase from Lachnospiraceae bacterium (TanALb) was characterized. The recombinant TanALb exhibited maximal activity at pH 7.0 and 50°C, and it maintained more than 70% relative activity from 30°C to 55°C. The activity of TanALb was enhanced by Mg2+ and Ca2+, and was dramatically reduced by Cu2+ and Mn2+. TanALb is capable of degrading esters of phenolic acids with long-chain alcohols, such as lauryl gallate as well as tannic acid. The Km value and catalytic efficiency (kcat /Km) of TanALb toward five substrates showed that tannic acid (TA) was the favorite substrate. Homology modeling and structural analysis indicated that TanALb contains an insertion loop (residues 341–450). Based on the moleculer docking and molecular dynamics (MD) simulation, this loop was observed as a flap-like lid to interact with bulk substrates such as tannic acid. TanALb is a novel bacterial tannase, and the characteristics of this enzyme make it potentially interesting for industrial use.


2021 ◽  
Author(s):  
Na Liu ◽  
Shuzhen Ni ◽  
Hailong Gao ◽  
Yongjie Chang ◽  
Yingjuan Fu ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 886
Author(s):  
Jiyun Lee ◽  
Seung Jun Choi

The purpose of this study was to deliver insights into the effect of interfacial composition and antioxidant polarity on the lipid oxidation of emulsions. Emulsions were created using blends of nonionic ethoxylated fatty acid alcohol surfactants with different hydrophilic head sizes, and lipophilic (TBHQ) and amphiphilic (lauryl gallate) antioxidants were incorporated into the emulsions. At the same surfactant concentration, emulsion stabilized with surfactant with a smaller hydrophilic head was more susceptible to lipid oxidation than that stabilized with surfactant with a larger hydrophilic head. When surfactants with a similar hydrophilic head size were used, lipid oxidation in emulsion containing more surfactant was slightly faster than that containing less surfactant. When emulsions were created with a 1:1 molar ratio mixture of surfactants with small and large hydrophilic heads, surfactant concentration (1.00 and 2.932 mM) had little effect on lipid peroxide generation rate. However, the concentration of thiobarbituric acid-reactive substances (TBARSs) in the emulsion prepared at 1.00 mM increased faster than that prepared at 2.93 mM. Alteration of interfacial composition and surfactant concentration did not affect antioxidant ability, regardless of antioxidant polarity, to inhibit lipid peroxide generation. However, the ability of lauryl gallate and TBHQ to prevent TBARS generation was elevated by mixing surfactants with small and large hydrophilic heads and by decreasing surfactant concentration. In most emulsions, lauryl gallate showed a more effective antioxidant ability than TBHQ.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3685
Author(s):  
Vika Gabe ◽  
Mouhammad Zeidan ◽  
Tomas Kacergius ◽  
Maksim Bratchikov ◽  
Mizied Falah ◽  
...  

Streptococcus mutans bacterium is implicated in the pathogenesis of dental caries due to the production of biofilm and organic acids from dietary sucrose. Despite the availability of various means of prophylaxis, caries still has a high worldwide prevalence. Therefore, it is important to find new pharmaceuticals to inhibit S. mutans biofilm formation and acidogenicity. The aim of the current study was to evaluate the activity of lauryl gallate (dodecyl gallate) against S. mutans acidogenicity, the expression of biofilm-associated genes, and biofilm development on solid surfaces (polystyrene, glass). The biofilm quantities produced by S. mutans bacteria were assessed using colorimetric and optical profilometry techniques. Acidogenicity was evaluated by measuring the pH of the biofilm growth medium with microelectrode. Assessment of the expression of gene coding for glucan-binding protein B (gbpB), glucosyltranferases B, -C, -D (gtfB, -C, -D), and the F-ATPase β subunit of F1 protein (atpD) was carried out using a quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The results demonstrate the capacity of lauryl gallate to significantly inhibit S. mutans acidogenicity and biofilm development on solid surfaces, in a dose-dependent manner, compared to untreated bacteria (p < 0.05). The highest activity of lauryl gallate occurred at a concentration of 98.98 µM, at which it suppressed biofilm formation by 100% and lowered pH levels by 98%. The effect of lauryl gallate treatment on gene expression changes, as demonstrated by our RT-qPCR data, was limited to the gtfD gene only, was a significant (48%) decrease in gene expression, obtained for the biofilm-producing bacteria, while a 300% increase in fold change for the same gene occurred in the planktonic cells. It is important to note that in previous studies we showed a broader effect of related derivatives. However, a similar magnitude of difference in effects between biofilm and planktonic cells for the atpD gene was obtained after treatment with octyl gallate and reverse magnitude for the same gene after treatment with ethyl gallate. Therefore, to ascertain the possible direct or indirect effects of lauryl gallate, as well as octyl gallate and ethyl gallate, more research is needed to examine the effects on the amount of enzymes and on the enzymatic activity of the products of the affected genes that are involved in the production and maintenance of biofilm by S. mutans.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 971
Author(s):  
Jinhyuk Kim ◽  
Seung Jun Choi

The chemical stability of the lipophilic bioactives encapsulated in emulsions can be influenced by emulsion droplet interfacial characteristics as well as by the ability of antioxidants incorporated in emulsion to prevent the degradation of the encapsulated compounds. Therefore, this study evaluated the effects of the interfacial characteristics of emulsions and the polarity of antioxidants on the storage stability of lycopene in emulsions. Emulsions with 5% (w/w) oil containing lycopene (30 µmol/kg emulsion) were prepared using a series of polyethylene glycol acyl ether-type emulsifiers through microfluidization. Change in lycopene content in emulsions was monitored by high performance liquid chromatography. Our findings show that the hydrophilic group size (or length) of emulsifiers and the emulsifier concentration at the interfacial film play a role, albeit minor, in controlling the storage stability of lycopene encapsulated in emulsions. Lipophilic (tert-butylhydroquinone (TBHQ)) and amphiphilic (lauryl gallate) antioxidants similarly improved the storage stability of lycopene in emulsions from acid- and radical-mediated degradation, independent of the characteristics of interfacial films of emulsions. However, TBHQ inhibited the degradation of lycopene in emulsions more effectively than lauryl gallate under conditions intended to accelerate the acid-mediated degradation of lycopene. Therefore, our findings can provide helpful information about what type of emulsifiers and antioxidants can be chosen for preparing food emulsions capable of maximizing the stability of lycopene encapsulated therein.


Author(s):  
Keihan GHATREH SAMANI ◽  
Effat FARROKHI ◽  
Aliye TABATABAEE ◽  
Narges JALILIAN ◽  
Mahbube JAFARI

Background: Tamoxifen (TAM) is widely used for adjuvant therapy in breast cancer patients. Tamoxifen therapy may lead to serious side effects. Anti-apoptotic substances in combination with chemotherapy drugs can result in additive or synergistic effects. Lauryl gallate (LG), a Gallic acid derivative, has been proven to inhibit tumor growth, without affecting normal cells. This study aimed to investigate the synergistic effect of TAM and LG in breast cancer cell line (MCF-7). Methods: In this experimental study, performed in ShahreKord University of Medical Science, Iran in 2017, the MCF-7 cells were treated by final concentrations of 10 μM TAM alone, and in combination with 200 μM of LG. We also used EX-527, as SIRT-1 inhibitor to examine the role of SIRT1 in cell apoptosis. BCL-2 and SIRT1 gene expression were measured by real-time PCR method, and cell apoptosis was investigated by flow cytometry. Results: Tamoxifen alone and in combination with LG decreased BCL-2 expression 2.64±0.75 and 6.38±1.9 fold, respectively, after 48 h (P<0.05). SIRT1 expression was increased 1.67±0.22 and 2.47±0.34 - fold by TAM alone and in combination with LG, respectively (P<0.05). TAM alone and in combination with LG increased the percentage of apoptotic cells 15.79±2.81 and 60.67±6.23 percent, respectively after 48 h (P<0.001). Conclusion: The combination of LG and TAM is more effective for induction of apoptosis of breast cancer cells, compared to individual use of each. Thus, our data pave the way for new therapeutic options for suppressing breast cancer growth.


2019 ◽  
Vol 493 ◽  
pp. 1021-1031
Author(s):  
Małgorzata Jurak ◽  
Robert Mroczka ◽  
Rafał Łopucki ◽  
Agnieszka Ewa Wiącek

2019 ◽  
Vol 90 (2) ◽  
pp. 166-178 ◽  
Author(s):  
Ji Eun Song ◽  
Artur Cavaco-Paulo ◽  
Carla Silva ◽  
Hye Rim Kim

The present study aimed to improve the properties of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. The lauryl gallate oligomerization process was conducted by laccase-mediated oligomerization. Lauryl gallate was chemically confirmed by matrix-assisted laser desorption/ionization with time-of-flight analyses. The oligomerization conditions were controlled considering the surface properties (water contact angle, surface energy, and water absorption time) of bacterial cellulose nonwoven fabrics. The controlled oligomerization conditions were 160 U/mL of laccase and 20 mM lauryl gallate. After bacterial cellulose was treated by the physical entrapment of lauryl gallate oligomers, X-ray photoelectron spectroscopy analysis showed that the N1 atomic composition (%) of bacterial cellulose increased from 0.78% to 4.32%. This indicates that the lauryl gallate oligomer molecules were introduced into the bacterial cellulose nanofiber structure. In addition, the water contact angle was measured after washing the bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers for 180 minutes, and it was found to maintain a water contact angle of 88°. The durability of bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers was confirmed by measuring the tensile strength after wetting and dimensional stability. As a result, the tensile strength after wetting was about five times higher and the dimensional stability was three times higher than that of untreated bacterial cellulose nonwoven fabric.


2018 ◽  
Vol 251 (2) ◽  
pp. 277-294 ◽  
Author(s):  
Małgorzata Jurak ◽  
Robert Mroczka ◽  
Rafał Łopucki

Sign in / Sign up

Export Citation Format

Share Document