loop regions
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mithun Mahawaththa ◽  
Henry Orton ◽  
Ibidolapo Adekoya ◽  
Thomas Huber ◽  
Gottfried Otting ◽  
...  

Arsenical probes enable structural studies of proteins. We report the first organoarsenic probes for nuclear magnetic resonance (NMR) spectroscopy to study proteins in solutions. These probes can be attached to irregular loop regions. A lanthanide-binding tag induces sizable pseudocontact shifts in protein NMR spectra of a magnitude never observed for small paramagnetic probes before.


2021 ◽  
Author(s):  
Santiago Chaillou ◽  
Eleftheria-Pinelopi Stamou ◽  
Leticia L. Torres ◽  
Ana B. Riesco ◽  
Warren Hazelton ◽  
...  

Plasmids of the ColE1 family are among the most frequently used plasmids in molecular biology. They were adopted early in the field for many biotechnology applications, and as model systems to study plasmid biology. The mechanism of replication of ColE1 plasmids is well understood, involving the interaction between a plasmid-encoded sense-antisense gene pair (RNAI and RNAII). Because of its mechanism of replication, bacterial cells cannot maintain two different plasmids with the same origin, with one being rapidly lost from the population — a process known as plasmid incompatibility. While mutations in the regulatory genes RNAI and RNAII have been reported to make colE1 plasmids more compatible, there has been no attempt to engineer compatible colE1 origins, which can be used for multi-plasmid applications and that can bypass design constrains created by the current limited plasmid origin repertoire available. Here, we show that by targeting sequence diversity to the loop regions of RNAI (and RNAII), it is possible to select new viable colE1 origins that are compatible with the wild-type one. We demonstrate origin compatibility is not simply determined by sequence divergence in the loops, and that pairwise compatibility is not an accurate guide for higher order interactions. We identify potential principles to engineer plasmid copy number independently from other regulatory strategies and we propose plasmid compatibility as a tractable model to study biological orthogonality. New characterised plasmid origins increase flexibility and accessible complexity of design for challenging synthetic biology applications where biological circuits can be dispersed between multiple independent genetic elements.


2021 ◽  
Vol 22 (19) ◽  
pp. 10862
Author(s):  
Carolina F. Rodrigues ◽  
Patrícia T. Borges ◽  
Magali F. Scocozza ◽  
Diogo Silva ◽  
André Taborda ◽  
...  

Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme’s overall stability by 2 kcal mol−1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1285
Author(s):  
Kejie Mou ◽  
Farwa Mukhtar ◽  
Muhammad Tahir Khan ◽  
Doaa B. Darwish ◽  
Shaoliang Peng ◽  
...  

The genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes 16 non-structural (Nsp) and 4 structural proteins. Among the Nsps, Nsp1 inhibits host gene expression and also evades the immune system. This protein has been proposed as a target for vaccine development and also for drug design. Owing to its important role, the current study aimed to identify mutations in Nsp1 and their effect on protein stability and flexibility. This is the first comprehensive study in which 295,000 complete genomes have been screened for mutations after alignment with the Wuhan-Hu-1 reference genome (Accession NC_045512), using the CoVsurver app. The sequences harbored 933 mutations in the entire coding region of Nsp1. The most frequently occurring mutation in the 180-amino-acid Nsp1 protein was R24C (n = 1122), followed by D75E (n = 890), D48G (n = 881), H110Y (n = 860), and D144A (n = 648). Among the 933 non-synonymous mutations, 529 exhibited a destabilizing effect. Similarly, a gain in flexibility was observed in 542 mutations. The majority of the most frequent mutations were detected in the loop regions. These findings imply that Nsp1 mutations might be useful to exploit SARS-CoV-2′s pathogenicity. Genomic sequencing of SARS-CoV-2 on a regular basis will further assist in analyzing variations among the drug targets and to test the diagnostic accuracy. This wide range of mutations and their effect on Nsp1’s stability may have some consequences for the host’s innate immune response to SARS-CoV-2 infection and also for the vaccines’ efficacy. Based on this mutational information, geographically strain-specific drugs, vaccines, and antibody combinations could be a useful strategy against SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Yeongjoon Lee ◽  
Marco Tonelli ◽  
Mehdi Rahimi ◽  
Thomas K. Anderson ◽  
Robert N. Kirchdoerfer ◽  
...  

AbstractThe solution structure of SARS-CoV-2 nonstructural protein 7 (nsp7) at pH 7.0 has been determined by NMR spectroscopy. nsp7 is conserved in the coronavirinae subfamily and is an essential co-factor of the viral RNA-dependent RNA polymerase for active and processive replication. Similar to the previously deposited structures of SARS-CoV-1 nsp7 at acidic and basic conditions, SARS-CoV-2 nsp7 has a helical bundle folding at neutral pH. Remarkably, the α4 helix shows gradual dislocation from the core α2-α3 structure as pH increases from 6.5 to 7.5. The protonation state of residue H36 contributes to the change of nsp7’s intramolecular interactions, and thus, to the structural variation near-neutral pH. Spin-relaxation results revealed that all three loop regions in nsp7 possess dynamic properties associated with this structural variation.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 606
Author(s):  
Anna E. Vlasenko ◽  
Vasiliy G. Kuznetsov ◽  
Grigorii V. Malykin ◽  
Alexandra O. Pereverzeva ◽  
Peter V. Velansky ◽  
...  

Nemertea is a phylum of marine worms whose members bear various toxins, including tetrodotoxin (TTX) and its analogues. Despite the more than 30 years of studying TTXs in nemerteans, many questions regarding their functions and the mechanisms ensuring their accumulation and usage remain unclear. In the nemertean Kulikovia alborostrata, we studied TTX and 5,6,11-trideoxyTTX concentrations in body extracts and in released mucus, as well as various aspects of the TTX-positive-cell excretion system and voltage-gated sodium (Nav1) channel subtype 1 mutations contributing to the toxins’ accumulation. For TTX detection, an immunohistological study with an anti-TTX antibody and HPLC-MS/MS were conducted. For Nav1 mutation searching, PCR amplification with specific primers, followed by Sanger sequencing, was used. The investigation revealed that, in response to an external stimulus, subepidermal TTX-positive cells released secretions actively to the body surface. The post-release toxin recovery in these cells was low for TTX and high for 5,6,11-trideoxyTTX in captivity. According to the data obtained, there is low probability of the targeted usage of TTX as a repellent, and targeted 5,6,11-trideoxyTTX secretion by TTX-bearing nemerteans was suggested as a possibility. The Sanger sequencing revealed identical sequences of the P-loop regions of Nav1 domains I–IV in all 17 studied individuals. Mutations comprising amino acid substitutions, probably contributing to nemertean channel resistance to TTX, were shown.


2021 ◽  
Vol 118 (34) ◽  
pp. e2112021118
Author(s):  
Yusuke Okuno ◽  
Janghyun Yoo ◽  
Charles D. Schwieters ◽  
Robert B. Best ◽  
Hoi Sung Chung ◽  
...  

The cosolvent effect arises from the interaction of cosolute molecules with a protein and alters the equilibrium between native and unfolded states. Denaturants shift the equilibrium toward the latter, while osmolytes stabilize the former. The molecular mechanism whereby cosolutes perturb protein stability is still the subject of considerable debate. Probing the molecular details of the cosolvent effect is experimentally challenging as the interactions are very weak and transient, rendering them invisible to most conventional biophysical techniques. Here, we probe cosolute–protein interactions by means of NMR solvent paramagnetic relaxation enhancement together with a formalism we recently developed to quantitatively describe, at atomic resolution, the energetics and dynamics of cosolute–protein interactions in terms of a concentration normalized equilibrium average of the interspin distance, 〈r−6〉norm, and an effective correlation time, τc. The system studied is the metastable drkN SH3 domain, which exists in dynamic equilibrium between native and unfolded states, thereby permitting us to probe the interactions of cosolutes with both states simultaneously under the same conditions. Two paramagnetic cosolute denaturants were investigated, one neutral and the other negatively charged, differing in the presence of a carboxyamide group versus a carboxylate. Our results demonstrate that attractive cosolute–protein backbone interactions occur largely in the unfolded state and some loop regions in the native state, electrostatic interactions reduce the 〈r−6〉norm values, and temperature predominantly impacts interactions with the unfolded state. Thus, destabilization of the native state in this instance arises predominantly as a consequence of interactions of the cosolutes with the unfolded state.


2021 ◽  
Author(s):  
Pritam Biswas ◽  
Uttam Pal ◽  
Aniruddha Adhikari ◽  
Susmita Mondal ◽  
Ria Ghosh ◽  
...  

Conformational dynamics of macromolecules including enzymes are essential for their function. The present work reports the role of essential dynamics in alpha-chymotrypsin (CHT) which correlates with its catalytic activity. Detailed optical spectroscopy and classical molecular dynamics (MD) simulation were used to study thermal stability, catalytic activity and dynamical flexibility of the enzyme. The study of the enzyme kinetics reveals an optimum catalytic efficiency at 308K. Polarization gated fluorescence anisotropy with 8-anilino-1-napthelene sulfonate (ANS) have indicated increasing flexibility of the enzyme with an increase in temperature. Examination of the structure of CHT reveal the presence of five loop regions (LRs) around the catalytic S1 pocket. MD simulations have indicated that flexibility increases concurrently with temperature which decreases beyond optimum temperature. Principal component analysis (PCA) of the eigenvectors manifests essential dynamics and gatekeeping role of the five LRs surrounding the catalytic pocket which controls the enzyme activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Hu ◽  
Zhen Wu ◽  
Shaoxiong Wu ◽  
Mingshu Wang ◽  
Renyong Jia ◽  
...  

Flavivirus envelope protein (E) plays an important role in cellular infection, especially in virulence and antigenicity. E domain III of Tembusu virus (TMUV) is highly conserved among flaviviruses and contains four loop regions. However, the functions of the loop regions of TMUV E domain III in the viral life cycle have not yet been discovered. In this study, using a reverse genetics system, we performed site-directed mutagenesis on loops I, II, III, and IV of TMUV E domain III. Mutant 6 (S388A.G389A.K390A) showed better proliferation than the wild-type virus, while mutants 1–5 exhibited decreased in vitro infectivity, as determined by immunofluorescence assay (IFA). Based on a TMUV replicon system, the mutations exhibited no apparent effect on TMUV RNA replication. Subcellular fractionation assays and packaging system assays indicated that mutations in loops II–IV (T332A, T332S, S365A.S366A.T367A, and S388A.G389A.K390A, respectively) disrupted virion assembly. Moreover, loops I–IV played an important role in virus binding and entry, while mutant 6 (S388A.G389A.K390A) exhibited robust activity in virus entry. Taken together, our findings indicated the critical role of the loop regions in TMUV E domain III in the virus entry and assembly process.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Achinta Sannigrahi ◽  
Sourav Chowdhury ◽  
Bidisha Das ◽  
Amrita Banerjee ◽  
Animesh Halder ◽  
...  

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, ALS. Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association mediated toxic aggregation and survival time scale after ALS diagnosis.


Sign in / Sign up

Export Citation Format

Share Document