ecosystem multifunctionality
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 80)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 172 ◽  
pp. 104370
Author(s):  
Hanwen Cui ◽  
Cameron Wagg ◽  
Xiangtai Wang ◽  
Ziyang Liu ◽  
Kun Liu ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Mengyu Wang ◽  
Nan Lu ◽  
Nannan An ◽  
Bojie Fu

The relationship between biodiversity and ecosystem multifunctionality (EMF) is crucial for understanding the processes of ecological restoration in semi-arid regions. However, partitioning the relative influence of various biodiversity attributes, namely taxonomic, functional, and phylogenetic diversity, on EMF during secondary succession is still unclear. This study aimed to bridge the gap by employing field measurements and the chronosequence approach at 21 plots with different stand ages and precipitation conditions on the Loess Plateau of China. For diversity indices, we calculated the Shannon–Wiener diversity index, Simpson’s dominance index, Pielou evenness index, community weighted mean (CWM), functional variance (FDvar), and Faith’s phylogenetic diversity (PD) based on the empirically measured composition and traits of plant species. The EMF was expressed as the averaged value of eight function variables (including aboveground biomass, root biomass, soil total carbon, total nitrogen, and total phosphorus content, soil organic carbon, available nitrogen and available phosphorus content). The results showed that species evenness and CWM of leaf dry matter content (LDMC) significantly increased yet the CWM of specific leaf area (SLA) decreased with stand age, indicating the resource-use strategy of the plants became more conservative through succession into its later stages. The EMF increased with both stand age and mean annual precipitation. The structural equation model revealed that stand age, soil water content (SWC), and the multiple diversity indices altogether accounted for 56.0% of the variation in the EMF. PD and the CWMs of plant height and LDMC had positive effects on the EMF, and the FDvar of leaf nitrogen had negative effects on EMF. However, the Shannon Wiener diversity had no significant effect on the EMF. Our results suggest that functional and phylogenetic diversity are more important than taxonomic diversity in predicting EMF, and that multidimensional biodiversity indices should be jointly considered to better predict EMF during the succession of semiarid grasslands.


2022 ◽  
Vol 42 (1) ◽  
Author(s):  
王凯,王聪,冯晓明,伍星,傅伯杰 WANG Kai

Author(s):  
Dieison A. Moi ◽  
Gustavo Q. Romero ◽  
Erik Jeppesen ◽  
Pavel Kratina ◽  
Diego C. Alves ◽  
...  

2021 ◽  
Author(s):  
Dieison Moi ◽  
fernando Lansac-Tôha ◽  
Gustavo Romero ◽  
Thadeu Sobral-Souza ◽  
Bradley Cardinale ◽  
...  

Abstract Many studies have shown that biodiversity regulates a multitude of ecological functions that are needed to maintain the productivity and efficiency of a variety of types of ecosystems. What is not known is how human activities may change the ‘multifunctionality’ of ecosystems as they have both direct impacts on ecosystems and indirect effects on the biodiversity that serves to control ecological functions. Using a database on hundreds of lakes spanning four large neotropical wetlands, we demonstrate that species richness and the functional diversity of fish, macrophytes, microcrustaceans, rotifers, protists, and phytoplankton are positively associated with ecosystem multifunctionality, including nutrient concentrations, standing biomass, and ecosystem metabolism. However, we also found that the relationship between biodiversity and multifunctionality is weakened by human pressures and that part of this impact occurs through changes in biodiversity. Our results suggest that human activities may break down the biological controls needed to maintain the suite of ecosystem functions that sustain wetlands.


2021 ◽  
Vol 132 ◽  
pp. 108312
Author(s):  
Agnieszka Sendek ◽  
Lena Kretz ◽  
Fons van der Plas ◽  
Carolin Seele-Dilbat ◽  
Christiane Schulz-Zunkel ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhouwen Ma ◽  
Jing Wu ◽  
Lan Li ◽  
Qingping Zhou ◽  
Fujiang Hou

Litter has been shown to alter the structure and functions of grassland ecosystems, and a knowledge of the effects of litter is essential for understanding the dynamics of ecosystem multifunctionality. However, relatively little is known about the effects of plant litter on ecosystem multifunctionality in alpine meadows. A three-year field experiment was conducted to explore how litter manipulation affects ecosystem multifunctionality. The plant litter treatments that were applied consisted of a range of litter mass levels and three dominant plant species, in an alpine meadow on the Qinghai-Tibet Plateau. The results showed that litter mass manipulation had a negative effect on ecosystem multifunctionality and most individual ecosystem functions (species richness, plant cover, and above-ground biomass) but had a positive effect on plant functional group evenness. In particular, the study found that low or medium amounts of litter (≤200gm−2) were beneficial in maintaining a high level of ecosystem multifunctionality. Furthermore, a structural equation model revealed that ecosystem multifunctionality was driven by indirect effects of litter mass manipulation on plant functional group evenness, plant cover, and species richness. These results suggest that litter-induced effects may be a major factor in determining grassland ecosystem multifunctionality, and they indicate the potential importance of grassland management strategies that regulate the dynamics of litter accumulation.


Sign in / Sign up

Export Citation Format

Share Document