shallow water effect
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Y K Kim ◽  
E Y K Ng

Ship-to-bank interaction is a complex physical phenomenon that involves not only in the asymmetric pressure field near banks or channels but also shallow water effect. Traditionally many experimental studies were carried out in this field. As numerical method is getting popular, there were various computational approaches as well. In this study, flow around a container ship in confined water is investigated with the open source CFD (Computational Fluid Dynamics) toolbox, OpenFOAM. Computations with several bank arrangements and different settings are performed. The OpenFOAM results are also compared to experiment results for validation.


2020 ◽  
Author(s):  
Guo Wenyun ◽  
Song Dehai ◽  
Guo Leicheng ◽  
Ge Jianzhong ◽  
Ding Pingxing ◽  
...  

<p>Tides always behaves different rising and falling durations, which can mostly attribute to the shallow-water effect and interactions among tidal constituents. The duration asymmetry may lead to an inequality in flood/ebb tidal current magnitudes, affecting the net sediment transport. Tidal duration asymmetry has time-dependent characteristics. We deducted a general framework for identifying the time-variability in tidal duration asymmetry. The application to the global tides showed that the fortnightly variability in tidal asymmetry is universal and that duration asymmetry can be stronger during neap tide than during spring tide. Then the framework is applied to the tides in the Changjiang Estuary. Prominent seasonal variation in tidal asymmetry is revealed, mainly relate to the river-tide interaction. Application to the tides in the Yangshan Harbor sea area revealed that the local-scale tidal asymmetry can be changed strongly by a large coastal engineering.</p>


2018 ◽  
Vol 3 (385) ◽  
pp. 9-17
Author(s):  
G. Kanevsky ◽  
◽  
А. Klubnichkin ◽  
А. Ryzhkov ◽  
K. Sazonov ◽  
...  

Transport ◽  
2017 ◽  
Vol 33 (2) ◽  
pp. 454-460
Author(s):  
Vytautas Paulauskas ◽  
Donatas Paulauskas ◽  
Birutė Plačienė ◽  
Raimondas Barzdžiukas

Quay walls or jetties in some ports or certain places of the ports are located in such a way that currents act at a particular angle to quay walls or jetties. Additional forces created by currents on mooring or moored ships as well as other forces produced by the wind, waves or shallow water effect should be taken in account when designing quay walls or jetties for ship mooring operations. The article describes ship mooring under crosscurrent conditions, calculates mooring methodology, experimentally examines the received theoretical results and provides recommendations to designers and ship operators when quay walls or jetties are arranged at a particular angle to the current.


2017 ◽  
Vol Vol 159 (A3) ◽  
Author(s):  
Y K Kim ◽  
E Y K Ng

Ship-to-bank interaction is a complex physical phenomenon that involves not only in the asymmetric pressure field near banks or channels but also shallow water effect. Traditionally many experimental studies were carried out in this field. As numerical method is getting popular, there were various computational approaches as well. In this study, flow around a container ship in confined water is investigated with the open source CFD (Computational Fluid Dynamics) toolbox, OpenFOAM. Computations with several bank arrangements and different settings are performed. The OpenFOAM results are also compared to experiment results for validation.


Sign in / Sign up

Export Citation Format

Share Document