The article deals with the issues of improving the accuracy of measurements of the geometric parameters of objects by optoelectronic systems, based on a television multiscan. A mathematical model of a multiscan with scanistor activation is developed, expressions for its integral output current and video signal are obtained, and the mechanism of their formation is investigated. An expression for the video signal is obtained that reflects the dual nature of the discrete–continuous multiscan structure: the video signal can have a discrete (pulse) or analog (continuous) form, depending on the step voltage between the photodiode cells of the multiscan. A Vernier discrete–analog method for measuring the parameters of the light zone on a multiscan is proposed, in which in order to increase the accuracy of the measurements, the location of the video pulse is determined relative to the neighboring reference pulses of a rigid geometric raster due to the slope of the discrete structure of the multiscan. It is established that the Vernier method enables one to make precision measurements of the coordinates, dimensions, and movements of the light zones by an overlay on a video raster of reference pulses from cells—a uniform sequence of Vernier pulses with a recurrence interval, followed by determining the number of the Vernier pulse that coincides with the raster pulse. An optoelectronic device based on a discrete–continuous multiscan, implemented on the basis of the proposed Vernier method of measuring the coordinates of the light zones, which has a high sensitivity to movement, is characteristic of continuous structures, and has increased stability and linearity of the coordinate characteristics typical for discrete structures, is developed.