discriminative dictionary learning
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 42)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoqing Gu ◽  
Yiqing Fan ◽  
Jie Zhou ◽  
Jiaqun Zhu

Electroencephalogram (EEG)-based emotion recognition (ER) has drawn increasing attention in the brain–computer interface (BCI) due to its great potentials in human–machine interaction applications. According to the characteristics of rhythms, EEG signals usually can be divided into several different frequency bands. Most existing methods concatenate multiple frequency band features together and treat them as a single feature vector. However, it is often difficult to utilize band-specific information in this way. In this study, an optimized projection and Fisher discriminative dictionary learning (OPFDDL) model is proposed to efficiently exploit the specific discriminative information of each frequency band. Using subspace projection technology, EEG signals of all frequency bands are projected into a subspace. The shared dictionary is learned in the projection subspace such that the specific discriminative information of each frequency band can be utilized efficiently, and simultaneously, the shared discriminative information among multiple bands can be preserved. In particular, the Fisher discrimination criterion is imposed on the atoms to minimize within-class sparse reconstruction error and maximize between-class sparse reconstruction error. Then, an alternating optimization algorithm is developed to obtain the optimal solution for the projection matrix and the dictionary. Experimental results on two EEG-based ER datasets show that this model can achieve remarkable results and demonstrate its effectiveness.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3693
Author(s):  
Xuchu Wang ◽  
Fusheng Wang ◽  
Yanmin Niu

Cardiac MRI left ventricular (LV) detection is frequently employed to assist cardiac registration or segmentation in computer-aided diagnosis of heart diseases. Focusing on the challenging problems in LV detection, such as the large span and varying size of LV areas in MRI, as well as the heterogeneous myocardial and blood pool parts in LV areas, a convolutional neural network (CNN) detection method combining discriminative dictionary learning and sequence tracking is proposed in this paper. To efficiently represent the different sub-objects in LV area, the method deploys discriminant dictionary to classify the superpixel oversegmented regions, then the target LV region is constructed by label merging and multi-scale adaptive anchors are generated in the target region for handling the varying sizes. Combining with non-differential anchors in regional proposal network, the left ventricle object is localized by the CNN based regression and classification strategy. In order to solve the problem of slow classification speed of discriminative dictionary, a fast generation module of left ventricular scale adaptive anchors based on sequence tracking is also proposed on the same individual. The method and its variants were tested on the heart atlas data set. Experimental results verified the effectiveness of the proposed method and according to some evaluation indicators, it obtained 92.95% in AP50 metric and it was the most competitive result compared to typical related methods. The combination of discriminative dictionary learning and scale adaptive anchor improves adaptability of the proposed algorithm to the varying left ventricular areas. This study would be beneficial in some cardiac image processing such as region-of-interest cropping and left ventricle volume measurement.


2021 ◽  
Vol 13 (6) ◽  
pp. 1218
Author(s):  
Yachao Zhang ◽  
Xuan Lai ◽  
Yuan Xie ◽  
Yanyun Qu ◽  
Cuihua Li

In this paper, we propose a new discriminative dictionary learning method based on Riemann geometric perception for polarimetric synthetic aperture radar (PolSAR) image classification. We made an optimization model for geometry-aware discrimination dictionary learning in which the dictionary learning (GADDL) is generalized from Euclidian space to Riemannian manifolds, and dictionary atoms are composed of manifold data. An efficient optimization algorithm based on an alternating direction multiplier method was developed to solve the model. Experiments were implemented on three public datasets: Flevoland-1989, San Francisco and Flevoland-1991. The experimental results show that the proposed method learned a discriminative dictionary with accuracies better those of comparative methods. The convergence of the model and the robustness of the initial dictionary were also verified through experiments.


Sign in / Sign up

Export Citation Format

Share Document