fusion features
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 55)

H-INDEX

6
(FIVE YEARS 5)

2021 ◽  
pp. 1-15
Author(s):  
Ru Cheng ◽  
Lukun Wang ◽  
Mingrun Wei

Finer-grained local features play a supplementary role in the description of pedestrian global features, and the combination of them has been an essential solution to improve discriminative performances in person re-identification (PReID) tasks. The existing part-based methods mostly extract representational semantic parts according to human visual habits or some prior knowledge and focus on spatial partition strategies but ignore the significant influence of channel information on PReID task. So, we proposed an end-to-end multi-branch network architecture (MCSN) jointing multi-level global fusion features, channel features and spatial features in this paper to better learn more diverse and discriminative pedestrian features. It is worth noting that the effect of multi-level fusion features on the performance of the model is taken into account when extracting global features. In addition, to enhance the stability of model training and the generalization ability of the model, the BNNeck and the joint loss function strategy are applied to all vector representation branches. Extensive comparative evaluations are conducted on three mainstream image-based evaluation protocols, including Market-1501, DukeMTMC-ReID and MSMT17, to validate the advantages of our proposed model, which outperforms previous state-of-the-art in ReID tasks.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11906
Author(s):  
Ruifen Cao ◽  
Meng Wang ◽  
Yannan Bin ◽  
Chunhou Zheng

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model’s predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model’s area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingfeng Jiang ◽  
Jiayan Gu ◽  
Yang Li ◽  
Bo Wei ◽  
Jucheng Zhang ◽  
...  

In recent years, with the development of artificial intelligence, deep learning model has achieved initial success in ECG data analysis, especially the detection of atrial fibrillation. In order to solve the problems of ignoring the correlation between contexts and gradient dispersion in traditional deep convolution neural network model, the hybrid attention-based deep learning network (HADLN) method is proposed to implement arrhythmia classification. The HADLN can make full use of the advantages of residual network (ResNet) and bidirectional long–short-term memory (Bi-LSTM) architecture to obtain fusion features containing local and global information and improve the interpretability of the model through the attention mechanism. The method is trained and verified by using the PhysioNet 2017 challenge dataset. Without loss of generality, the ECG signal is classified into four categories, including atrial fibrillation, noise, other, and normal signals. By combining the fusion features and the attention mechanism, the learned model has a great improvement in classification performance and certain interpretability. The experimental results show that the proposed HADLN method can achieve precision of 0.866, recall of 0.859, accuracy of 0.867, and F1-score of 0.880 on 10-fold cross-validation.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 683
Author(s):  
Jin Li ◽  
Wenjie Liu ◽  
Luolong Cao ◽  
Haoran Luo ◽  
Siwen Xu ◽  
...  

The distinguishable subregions that compose the hippocampus are differently involved in functions associated with Alzheimer’s disease (AD). Thus, the identification of hippocampal subregions and genes that classify AD and healthy control (HC) groups with high accuracy is meaningful. In this study, by jointly analyzing the multimodal data, we propose a novel method to construct fusion features and a classification method based on the random forest for identifying the important features. Specifically, we construct the fusion features using the gene sequence and subregions correlation to reduce the diversity in same group. Moreover, samples and features are selected randomly to construct a random forest, and genetic algorithm and clustering evolutionary are used to amplify the difference in initial decision trees and evolve the trees. The features in resulting decision trees that reach the peak classification are the important “subregion gene pairs”. The findings verify that our method outperforms well in classification performance and generalization. Particularly, we identified some significant subregions and genes, such as hippocampus amygdala transition area (HATA), fimbria, parasubiculum and genes included RYR3 and PRKCE. These discoveries provide some new candidate genes for AD and demonstrate the contribution of hippocampal subregions and genes to AD.


Sign in / Sign up

Export Citation Format

Share Document