morphological dormancy
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
pp. 1-29
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.


2021 ◽  
Author(s):  
Matthew Walker ◽  
Marta Pérez ◽  
Tina Steinbrecher ◽  
Frances Gawthrop ◽  
Iva Pavlović ◽  
...  

2020 ◽  
Vol 29 (2) ◽  
pp. e017
Author(s):  
Raquel Herranz-Ferrer ◽  
Miguel Ángel Copete-Carreño ◽  
José María Herranz-Sanz ◽  
Elena Copete-Carreño ◽  
Pablo Ferrandis-Gotor

Aim of the study: To study the germination ecology of two species of the genus Ribes to reveal their levels of morphophysiological dormancy (MPD) and to facilitate the production of plants from seeds, a key tool for population reinforcement.Area of study: Experiments were carried out both outdoors and in the laboratory in Albacete (Spain) with seeds from the Meridional Iberian System mountain range.Material and methods: Seeds from one population of Ribes alpinum and from other of Ribes uva-crispa were collected during several years. Embryo length, radicle and seedling emergence, and effects on germination of stratification and GA3 were analysed to determine the level of MPD.Main results: In R. alpinum, embryo length in fresh seeds was 0.49 mm, needing to grow to 1.30 mm to germinate. Warm stratification (25/10ºC) promoted embryo length enlargement to 0.97 mm. Afterwards, seeds germinated within a wide temperature range. Embryo growth and seedling emergence occur late summer-early autumn. In R. uva-crispa, embryo length in fresh seeds was 0.52 mm, being 2.10 mm the minimal size to germinate. Embryos exposed to a moderately warm stratification (20/7ºC + 15/4ºC) followed by cold (5ºC) grew to 2.30 mm. Then, seeds germinated ≥ 80% when incubated at temperatures ≥ 15/4ºC. Embryos grew in autumn/early winter, and seedlings emerged late winter-early spring.Research highlights: These results showed that R. alpinum seeds have a nondeep simple MPD while R. uva-crispa seeds have a nondeep complex MPD. Moreover, the different germinative models found for each species help explain their installation in distinct habitats.Keywords: Ribes; seed dormancy break; radicle emergence; seedling emergence; nondeep simple and nondeep complex MPD.Abbreviations used: Morphophysiological dormancy (MPD), morphological dormancy (MD), Gibberellic acid (GA3), months (m).


Botany ◽  
2020 ◽  
Vol 98 (6) ◽  
pp. 327-332
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Alvin Yoshinaga ◽  
Dustin Wolkis

We determined the requirements for dormancy break/germination and kind of dormancy in seeds of the Hawaiian lobelioids Cyanea kunthiana, Delissea rhytidoperma, Lobelia grayana, L. hypoleuca, Trematolobelia grandifolia, and T. singularis. Fresh seeds were incubated in light/dark at 15/6, 20/10, and 25/15 °C, and germination monitored at two-week intervals for 14 weeks. For each species, the mean embryo length (E): seed (S) length ratio was determined for freshly matured seeds and for seeds at the time the seed coat split but before radicle emergence (germination). The embryo in seeds of all six species incubated at 25/15 °C grew inside the seed prior to germination (42%–148% increase in E:S ratio, depending on species). Seeds of L. grayana and L. hypoleuca have morphological dormancy (MD); they germinated to 82%–98% at the three temperature regimes in 4 weeks. Seeds of the other species have nondeep simple morphophysiological dormancy (MPD) and require >4 weeks for maximum germination to occur. Our results add to the growing body of knowledge about the kind (class) of seed dormancy in Campanulaceae, which suggests that seeds of members of this family have either MD or MPD and embryos grow at warm (≥15 °C) temperatures.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 700 ◽  
Author(s):  
Jing Feng ◽  
Yongbao Shen ◽  
Fenghou Shi ◽  
Chengzhong Li

The embryos of Ginkgo biloba L. are generally reported to undergo after-ripening and be underdeveloped at the time of dispersal, which suggests that the seeds have morphological dormancy (MD) or morphological physiological dormancy (MPD). The aim of this work is to determine whether embryos of a G. biloba population are well-developed at the time of seed dispersal, and whether the seeds are dormant or not. From 8 September, which was the 140th day after flowering (140 DAF), seeds were collected separately from trees (T) and the ground (G) every 10 days until 7 December (230 DAF), resulting in a total of 10 samples. The changes in vertical diameter, transverse diameter, fresh weight, water content, and embryo length during seed development were measured. Simultaneously, the effects of different temperatures (15, 25, 30, and 35 °C) on seed germination, dormancy, and germination characteristics of G. biloba seeds were studied. Results showed that the embryos of G. biloba seeds were well developed and had no morphological dormancy. On 18 September (150 DAF), embryos were visible with a length of 2.5 mm. On 7 December (230 DAF), at the time of seed dispersal, their length was 17.1 mm. The germination percentage of the isolated embryos and seeds increased as the delay in seed collection increased, but there was no significant difference between T and G (p > 0.05). On 7 December (230 DAF), the germination of the isolated embryos reached 98%, indicating that the embryos were nondormant. Without pretreatment, seed germination was 82.57% within four weeks at 25 °C. Furthermore, the germination test at different temperatures showed the highest germination percentage at 30 °C (84.82%). Obviously, the G. biloba seeds were nondormant. The mean germination time (MGT) of the seeds at 30 and 35 °C was significantly lower than that of the seeds at 15 and 25 °C, and the speed of germination (SG) was significantly higher than that of the seeds at 15 and 25 °C. Although there was no significant difference in the seed-germination percentage between 30 and 35 °C, a portion of the seeds (9.5%) rotted at 35 °C. Therefore, 30 °C was the most favorable germination temperature for G. biloba seeds. This is the first study that reports G. biloba seeds with no dormancy.


2013 ◽  
Vol 23 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Shun-Ying Chen ◽  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Ching-Te Chien

AbstractAlthough it has been speculated that seeds of the gymnosperm family Podocarpaceae have an underdeveloped embryo, no detailed studies have been done to definitively answer this question. Our purpose was to determine if embryos in seeds of two species of Podocarpaceae, Podocarpus costalis and Nageia nagi, from Taiwan are underdeveloped and to examine the kind of dormancy the seeds have. Embryos in fresh seeds of P. costalis were 4.6 ± 0.5 mm long, and they increased in length by about 54% before radicle emergence (germination), demonstrating that the embryo is underdeveloped at seed maturity. Seeds germinated to >90% at 30/20, 25/15 and 25°C in light in ≤ 4 weeks, without any cold stratification pretreatment. Thus, seeds of P. costalis have morphological dormancy (MD). Embryos in fresh seeds of N. nagi were 7.4 ± 0.8 mm long and they increased in length by about 39% before radicle emergence (germination) occurred, indicating that the embryo is underdeveloped at seed maturity. Seeds germinated to < 25% at 30/20 and 25°C in light in 4 weeks but to >90% at the same temperatures in 12 weeks. Thus, most seeds of N. nagi have morphophysiological dormancy (MPD). Although underdeveloped embryos are considered to be a primitive condition in seed plants, they also occur in the most advanced orders. The occurrence of underdeveloped embryos in Podocarpaceae documents that they are not restricted to a basal clade in gymnosperms.


2009 ◽  
Vol 24 (1) ◽  
pp. 20-26 ◽  
Author(s):  
SHYAM S. PHARTYAL ◽  
TETSUYA KONDO ◽  
YOICHIRO HOSHINO ◽  
CAROL C. BASKIN ◽  
JERRY M. BASKIN

2009 ◽  
Vol 19 (4) ◽  
pp. 682-685 ◽  
Author(s):  
Hector E. Pérez

Delayed and inconsistent seed germination often hampers commercial production of palms (Arecaceae). Such sporadic germination is commonly due to seed dormancy. Mature, freshly shed seeds of palms typically display a combination of underdeveloped embryos (morphological dormancy) and the inability of developing embryos to rupture covering structures (physiological dormancy). Fruit and seedcoats are capable of imbibing water. Therefore, dormancy due to water-impermeable fruit or seedcoats (physical dormancy) does not occur. Removal of embryo covering structures, such as the pericarp and operculum, followed by incubation under moist, warm (25–35 °C) conditions promotes rapid and complete germination. Complete burial in soil promotes germination of seeds in intact fruit of loulu palm (Pritchardia remota).


2008 ◽  
Vol 56 (7) ◽  
pp. 583 ◽  
Author(s):  
Ramesh C. Thapliyal ◽  
Shyam S. Phartyal ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

Dillenia indica Linn. is a nearly evergreen tree widely distributed in South-east Asia. Regeneration is by seeds borne within large indehiscent fruits. When extracted fresh, seeds are glued together by the sticky mucilage on the seedcoat. Mucilage anchors seeds during rains, thus preventing them from escaping the fruit. Mucilage does not promote or inhibit germination, but it does restrict the inflow of water into seeds during the initial stages of imbibition. In nature, seeds germinate (within fruits) in July–August following heavy rains that wash off most of the mucilage. Light had a significant effect on germination: a 12/12 h light/dark regime resulted in more and faster germination than when seeds were incubated in total darkness. Seeds exhibited one flush of germination within fruits and another flush in the laboratory following extraction, drying and rehydration, suggesting the occurrence of two physiological types of seeds with regard to light requirement for germination. The embryo of D. indica is underdeveloped, and seeds take ~30 days to germinate under appropriate conditions. Thus, the seeds have morphological dormancy (MD). The possible roles of seed-coat mucilage and light in the germination biology of D. indica seeds in nature are discussed.


2006 ◽  
Vol 16 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin ◽  
Ching-Te Chien ◽  
Shun-Ying Chen

The embryo length/seed length (E/S) ratio of the early diverging eudicot Trochodendron aralioides is 0.34. Embryos in fresh seeds were 0.36±0.01 mm long, and they increased in length by about 250% (in 20 d) before radicle emergence (germination) occurred, demonstrating that the embryo is underdeveloped at seed maturity. Seeds germinated to 95–100% at 20/10, 25/15 and 30/15°C in light in ≤4 weeks, without any pretreatment, but no seeds germinated in darkness. Thus, seeds of T. aralioides have morphological dormancy (MD), which is considered to be the primitive condition in seed plants, and MD probably has existed in the genus Trochodendron since its origin in the early Tertiary.


Sign in / Sign up

Export Citation Format

Share Document