This paper presents a design of a radio frequency identification (RFID) tag antenna in the ultra-high-frequency (UHF) range, which is applicable to a vehicular license plate attached to a vehicle bumper. The main goals are to first improve the identification ratio by controlling the radiation beam pattern and, second, to control the beam direction. Since every vehicle has a license plate, the available plate structure is used to design the antenna. The shape of the tag is rectangular and has a dimension of 525 mm × 116 mm, which is smaller than the typical size of standard plates, 540 mm × 120 mm, used in Europe and Korea. The fabricated tag antenna, the license plate, and the vehicular bumper are fixed by volt and nut. For vehicle tracking and identification, RFID readers are deployed on the road side. For efficient identification, a long distance passive UHF RFID license plate with a patch antenna is proposed to provide not only line-of-sight identification but also left and right beams. Unlike the general UHF tag antennas, in this paper, the patch antenna is designed to attach to the metal part of the car, the license plate holder. The beam patterns of the RFID tag antenna can be controlled by the patch antenna parameter values. The simulation result demonstrates that the proposed UHF RFID tag antenna has a beam radiation pattern as required at 920 MHz. In addition, the estimated read range of the proposed plate meets the requirement of RFID systems.