wave front sets
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Stevan Pilipović ◽  
Nenad Teofanov ◽  
Filip Tomić

Following the well-known theory of Beurling and Roumieu ultradistributions, we investigate new spaces of ultradistributions as dual spaces of test functions which correspond to associated functions of logarithmic-type growth at infinity. In the given framework we prove that boundary values of analytic functions with the corresponding logarithmic growth rate towards the real domain are ultradistributions. The essential condition for that purpose, known as stability under ultradifferential operators in the classical ultradistribution theory, is replaced by a weaker condition, in which the growth properties are controlled by an additional parameter. For that reason, new techniques were used in the proofs. As an application, we discuss the corresponding wave front sets.


2020 ◽  
Vol 490 (2) ◽  
pp. 124329
Author(s):  
Sanja Atanasova ◽  
Stevan Pilipović ◽  
Bojan Prangoski ◽  
Katerina Saneva

2020 ◽  
Vol 8 ◽  
Author(s):  
AVRAHAM AIZENBUD ◽  
RAF CLUCKERS

Many phenomena in geometry and analysis can be explained via the theory of $D$ -modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$ -modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$ -class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$ -class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$ -class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$ -class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$ -class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.


Author(s):  
Michel Raibaut

Abstract The concept of wave front set was introduced in 1969–1970 by Sato in the hyperfunctions context [1, 34] and by Hörmander [23] in the $\mathcal C^{\infty }$ context. Howe in [25] used the theory of wave front sets in the study of Lie groups representations. Heifetz in [22] defined a notion of wave front set for distributions in the $p$-adic setting and used it to study some representations of $p$-adic Lie groups. In this article, we work in the $k\mathopen{(\!(} t \mathopen{)\!)}$-setting with $k$ a Characteristic 0 field. In that setting, balls are no longer compact but working in a definable context provides good substitutes for finiteness and compactness properties. We develop a notion of definable distributions in the framework of [13] and [14] for which we define notions of singular support and $\Lambda$-wave front sets (relative to some multiplicative subgroups $\Lambda$ of the valued field) and we investigate their behavior under natural operations like pullback, tensor product, and products of distributions.


2019 ◽  
Vol 105 (119) ◽  
pp. 1-16
Author(s):  
Stevan Pilipovic ◽  
Joachim Toft

Quasi-analytic wave-front sets of distributions which correspond to the Gevrey sequence p!s, s\in


Filomat ◽  
2019 ◽  
Vol 33 (18) ◽  
pp. 5829-5836
Author(s):  
Pavel Dimovski ◽  
Bojan Prangoski

We define ultradistributional wave front sets with respect to translation-modulation invariant Banach spaces of ultradistributions having solid Fourier image. The main result is their characterisation by the short-time Fourier transform.


2018 ◽  
Vol 5 (1) ◽  
pp. 97-131 ◽  
Author(s):  
Raf Cluckers ◽  
Immanuel Halupczok ◽  
François Loeser ◽  
Michel Raibaut
Keyword(s):  

Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 2763-2782 ◽  
Author(s):  
Stevan Pilipovic ◽  
Nenad Teofanov ◽  
Filip Tomic

We propose the relaxation of Gevrey regularity condition by using sequences which depend on two parameters, and define spaces of ultradifferentiable functions which contain Gevrey classes. It is shown that such a space is closed under superposition, and therefore inverse closed as well. Furthermore, we study partial differential operators whose coefficients are less regular then Gevrey-type ultradifferentiable functions. To that aim we introduce appropriate wave front sets and prove a theorem on propagation of singularities. This extends related known results in the sense that assumptions on the regularity of the coefficients are weakened.


Sign in / Sign up

Export Citation Format

Share Document