scholarly journals WAVE FRONT HOLONOMICITY OF -CLASS DISTRIBUTIONS ON NON-ARCHIMEDEAN LOCAL FIELDS

2020 ◽  
Vol 8 ◽  
Author(s):  
AVRAHAM AIZENBUD ◽  
RAF CLUCKERS

Many phenomena in geometry and analysis can be explained via the theory of $D$ -modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$ -modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$ -class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$ -class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$ -class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$ -class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$ -class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.

2015 ◽  
Vol 207 (2) ◽  
pp. 527-580 ◽  
Author(s):  
Avraham Aizenbud ◽  
Vladimir Drinfeld

Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


Geophysics ◽  
1977 ◽  
Vol 42 (7) ◽  
pp. 1450-1457 ◽  
Author(s):  
Robert D. Regan ◽  
William J. Hinze

The mathematical structure of the Fourier transformations of theoretical gravity anomalies of several geometrically simple bodies appears to have distinct advantages in the interpretation of these anomalies. However, the practical application of this technique is dependent upon the transformation of an observed gravity anomaly of finite length. Ideally, interpretation methods similar to those for the transformations of the theoretical gravity anomalies should be developed for anomalies of a finite length. However, the mathematical complexity of the convolution integrals in the transform calculations of theoretical anomaly segments indicate that no general closed analytical solution useful for interpretation is available. Thus, in order to utilize the Fourier transform interpretation method, the data must be of sufficient length for the finite transform to closely approximate the theoretical transforms.


Author(s):  
Michel Raibaut

Abstract The concept of wave front set was introduced in 1969–1970 by Sato in the hyperfunctions context [1, 34] and by Hörmander [23] in the $\mathcal C^{\infty }$ context. Howe in [25] used the theory of wave front sets in the study of Lie groups representations. Heifetz in [22] defined a notion of wave front set for distributions in the $p$-adic setting and used it to study some representations of $p$-adic Lie groups. In this article, we work in the $k\mathopen{(\!(} t \mathopen{)\!)}$-setting with $k$ a Characteristic 0 field. In that setting, balls are no longer compact but working in a definable context provides good substitutes for finiteness and compactness properties. We develop a notion of definable distributions in the framework of [13] and [14] for which we define notions of singular support and $\Lambda$-wave front sets (relative to some multiplicative subgroups $\Lambda$ of the valued field) and we investigate their behavior under natural operations like pullback, tensor product, and products of distributions.


Author(s):  
R. J. Elliott

Introduction. Spectral synthesis is the study of whether functions in a certain set, usually a translation invariant subspace (a variety), can be synthesized from certain simple functions, exponential monomials, which are contained in the set. This problem is transformed by considering the annihilator ideal in the dual space, and after taking the Fourier transform the problem becomes one of deciding whether a function is in a certain ideal, that is, we have a ‘division problem’. Because of this we must take into consideration the possibility of the Fourier transforms of functions having zeros of order greater than or equal to 1. This is why, in the original situation, we study whether varieties are generated by their exponential monomials, rather than just their exponential functions. This viewpoint of the problem as a division question, of course, perhaps throws light on why Wiener's Tauberian theorem works, and is implicit in the construction of Schwartz's and Malliavin's counter examples to spectral synthesis in L1(G) (cf. Rudin ((4))).


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
C. Boiti ◽  
D. Jornet ◽  
J. Juan-Huguet

We introduce the wave front setWF*P(u)with respect to the iterates of a hypoelliptic linear partial differential operator with constant coefficients of a classical distributionu∈𝒟′(Ω)in an open set Ω in the setting of ultradifferentiable classes of Braun, Meise, and Taylor. We state a version of the microlocal regularity theorem of Hörmander for this new type of wave front set and give some examples and applications of the former result.


1988 ◽  
Vol 3 (1) ◽  
pp. 32-38 ◽  
Author(s):  
David G. Cameron ◽  
Ernest E. Armstrong

AbstractFourier transform methods of smoothing and interpolation are applied to X-ray diffraction data. It is shown that, frequently, too small a step size is used. Major gains are to be expected by selection of the optimum step size and use of these methods.A comparison of Fourier transforms of diffractograms of quartz measured between 67 and 69° 2θ, collected at varying step intervals (0.1 to 0.01° 2θ) was used to illustrate these applications. By examining the Fourier transform of the diffractogram and noting where it decays to die baseline, a reasonable estimate of the optimal step interval can be obtained. In addition, Fourier interpolation can be used to enhance the appearance of the diffractogram, approximating a continuous plot.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Nassar H. S. Haidar

We report on inversion of the Fourier transform when the frequency variable can be scaled in a variety of different ways that improve the resolution of certain parts of the frequency domain. The corresponding inverse Fourier transform is shown to exist in the form of two dual scale-frequency series. Upon discretization of the continuous scale factor, this Fourier transform series inverse becomes a certain nonharmonic double series, a discretized scale-frequency (DSF) series. The DSF series is also demonstrated, theoretically and practically, to be rate-optimizable with respect to its two free parameters, when it satisfies, as an entropy maximizer, a pertaining recursive nonlinear programming problem incorporating the entropy-based uncertainty principle.


Sign in / Sign up

Export Citation Format

Share Document