excellent energy resolution
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 2105 (1) ◽  
pp. 012016
Author(s):  
Ioannis Katsioulas

Abstract The nature of the neutrino is a central questions in physics. The search for neutrinoless double beta decay is the most sensitive experimental approach to demonstrate that the neutrino is a Majorana particle. Observation of such a rare process demands a detector with an excellent energy resolution, extremely low background, and a large mass of a double beta decaying isotope. R2D2 aims to develop a novel spherical high-pressure TPC that meets all the above requirements. As a first step, the energy resolution of the R2D2 prototype was measured. A 1.1% (FWHM) energy resolution was achieved for 5.3 MeV α-particles in Ar:CH4 at pressure up to 1.1 bar. This is a major milestone for R2D2 and paves the way for further studies with Xe gas and the possible use of this technology for neutrinoless double beta decay searches.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 341
Author(s):  
Valerio D’Andrea ◽  
Natalia Di Marco ◽  
Matthias Bernhard Junker ◽  
Matthias Laubenstein ◽  
Carla Macolino ◽  
...  

In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the 76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The Majorana and Gerda experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2×10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the Gerda experiment setting a limit on the half-life of 76Ge 0νββ decay at T1/2>1.8×1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
◽  
A. Simón ◽  
Y. Ifergan ◽  
A. B. Redwine ◽  
R. Weiss-Babai ◽  
...  

Abstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ∼ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ∼ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ∼ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e−e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.


2021 ◽  
Vol 9 (7) ◽  
pp. 721
Author(s):  
Daowei Dou ◽  
Zhi Zeng ◽  
Wen Yu ◽  
Ming Zeng ◽  
Wu Men ◽  
...  

In a nuclear emergency, the application of in situ spectrometers for monitoring environmental radioactivity is significantly important, as information on the type and activity of radionuclides released from the accident can be obtained quickly. However, in emergency environmental radiological monitoring, a balance between energy resolution and detecting efficiency must be considered in selecting an appropriate detector. In this study, in situ gamma spectrometry was conducted with the LaBr3 detector to determine the radioactivity of seawater at the discharging outlet of a coastal nuclear power plant in southeast China. The results show that the LaBr3 scintillator has excellent energy resolution and detection efficiency, making it a promising detector for emergency monitoring.


2021 ◽  
Vol 57 (6) ◽  
Author(s):  
Michelle Färber ◽  
Michael Weinert ◽  
Miriam Müscher ◽  
Mark Spieker ◽  
Julius Wilhelmy ◽  
...  

AbstractThe dipole response of the proton-magic nucleus $${}^{124}\hbox {Sn}$$ 124 Sn was previously investigated with electromagnetic and hadronic probes. Different responses were observed revealing the so-called isospin splitting of the Pygmy Dipole Resonance (PDR). Here we present the results of a new study of $${}^{124}\hbox {Sn}$$ 124 Sn using inelastic proton scattering at low energies to test an additional probe possibly exciting states of the PDR. The response to the new probe as well as the $$\gamma $$ γ -decay behavior of excited states were studied. The $${}^{124}\hbox {Sn}$$ 124 Sn (p,p’$$\gamma $$ γ ) experiment was performed at $$E_p = {15}\,\,\hbox {MeV}$$ E p = 15 MeV using the combined spectroscopy setup SONIC@HORUS at the Tandem accelerator of the University of Cologne. Proton-$$\gamma $$ γ coincidences were recorded, enabling a state-to-state analysis due to the excellent energy resolution for both particles and $$\gamma $$ γ rays. $$ J=1 $$ J = 1 states in the PDR region were populated in the present inelastic proton scattering experiment. Many $$\gamma $$ γ -decay branching ratios could be determined.


2021 ◽  
Author(s):  
Raúl Gómez-Herrero ◽  
Daniel Pacheco ◽  
Alexander Kollhoff ◽  
Francisco Espinosa Lara ◽  
Johan L. Freiherr von Forstner ◽  
...  

&lt;p&gt;The first solar electron events detected by Solar Orbiter were observed by the Energetic Particle Detector (EPD) suite during July 11-23, 2020, when the spacecraft was at heliocentric distances between 0.61 and 0.69 au. We combined EPD electron observations from 4 keV to the relativistic range (few MeV), radio dynamic spectra and extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of these electron events. Electron anisotropies and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions. We found that all the electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except one. A diversity of time profiles and pitch-angle distributions (ranging from almost isotropic to beam-like) was observed. These observations indicate that different source locations and different magnetic connectivity and transport conditions were likely involved. The broad spectral range covered by EPD with excellent energy resolution and the high time cadence ensure that future observations close to the Sun will contribute to the understanding of the acceleration, release, and transport processes of energetic particles. EPD observations will play a key role in the identification of the sources of impulsive events and the links between the near-relativistic electrons and the ion populations enriched in &lt;sup&gt;3&lt;/sup&gt;He and heavy ions&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
A. Jany ◽  
M. Misiaszek ◽  
T. Mroz ◽  
K. Panas ◽  
G. Zuzel ◽  
...  

AbstractExperiments searching for the neutrinoless double beta decay in $$^{76}$$ 76 Ge are currently achieving the lowest background level and, in connection with the excellent energy resolution of germanium detectors, they exhibit the best discovery potential for the decay. Expansion to a ton scale of the active target mass is presently considered – in this case on-site production of the detectors may be an option. In this paper we describe the fabrication and characterization procedures of a prototype detector with a small p+ contact, which enhances the abilities of the pulse shape discrimination – one of the most important tools for background reduction. Simulations of the shapes of pulses from the detector were carried out and tuned, taking the advantage of the fact that all the parameters of the Ge crystal, cryostat and of the spectroscopic chain were known. As a result, the pulse shape analyses performed on the simulated and measured data agree very well. The worked out method allows to optimize geometry and crystal parameters in terms of pulse shape analysis efficiency, before the actual production of the detectors.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
A. Fulst ◽  
A. Lokhov ◽  
M. Fedkevych ◽  
N. Steinbrink ◽  
C. Weinheimer

AbstractSpectrometers based on the magnetic adiabatic collimation followed by an electrostatic filter (MAC-E-filter) principle combine high angular acceptance with an excellent energy resolution. These features make MAC-E-filters very valuable for experiments where the kinetic energy of ions or electrons from rare processes has to be measured with utmost sensitivity and precision. Examples are direct neutrino mass experiments like KATRIN which investigate the energy of electrons in the endpoint region of the tritium $$\beta $$ β -spectrum. However, the MAC-E-filter is a very sharp energy high-pass filter but not a differential spectrometer. To determine a spectral shape of a charged particle source, different electric retarding potentials have to be used sequentially, reducing the statistics. In a previous work we have shown that the advantages of the standard MAC-E-filter can be combined with a measurement of the time-of-flight (TOF), allowing to determine spectral information over a certain energy range with one retarding potential only, with the corresponding gain in statistics. This TOF method requires one to know the start time of the charged particles, which is not always possible. Therefore, we propose a new method which does not require the determination of the start time and which we call “time-focusing time-of-flight” (tfTOF): by applying a time dependent acceleration and deceleration potential at a subsequent MAC-E-filter, an energy dependent post-bunching of the charged particles is achieved.


2020 ◽  
Vol 200 (5-6) ◽  
pp. 261-268
Author(s):  
N. Karcher ◽  
D. Richter ◽  
F. Ahrens ◽  
R. Gartmann ◽  
M. Wegner ◽  
...  

Abstract Due to their excellent energy resolution, the intrinsically fast signal rise time, the huge energy dynamic range, and the almost ideally linear detector response, metallic magnetic calorimeters (MMC)s are very well suited for a variety of applications in physics. In particular, the ECHo experiment aims to utilize large-scale MMC-based detector arrays to investigate the mass of the electron neutrino. Reading out such arrays is a challenging task which can be tackled using microwave SQUID multiplexing. Here, the detector signals are transduced into frequency shifts of superconducting microwave resonators, which can be deduced using a high-end software-defined radio (SDR) system. The ECHo SDR system is a custom-made modular electronics, which provides 400 channels equally distributed in a 4 to 8 GHz frequency band. The system consists of a superheterodyne RF frequency converter with two successive mixers, a modular conversion, and an FPGA board. For channelization, a novel heterogeneous approach, utilizing the integrated digital down conversion (DDC) of the ADC, a polyphase channelizer, and another DDC for demodulation, is proposed. This approach has excellent channelization properties while being resource-efficient at the same time. After signal demodulation, on-FPGA flux-ramp demodulation processes the signals before streaming it to the data processing and storage backend.


2020 ◽  
Vol 7 (7) ◽  
pp. 1218-1227
Author(s):  
Huating Kong ◽  
Jichao Zhang ◽  
Jiang Li ◽  
Jian Wang ◽  
Hyun-Joon Shin ◽  
...  

Abstract Spatial resolution defines the physical limit of microscopes for probing biomolecular localization and interactions in cells. Whereas synchrotron-based X-ray microscopy (XRM) represents a unique approach for imaging a whole cell with nanoscale resolution due to its intrinsic nanoscale resolution and great penetration ability, existing approaches to label biomolecules rely on the use of exogenous tags that are multi-step and error-prone. Here, we repurpose engineered peroxidases as genetically encoded X-ray-sensitive tags (GXET) for site-specific labeling of protein-of-interest in mammalian cells. We find that 3,3′-diaminobenzidine (DAB) polymers that are in-situ catalytically formed by fusion-expressed peroxidases are visible under XRM. Using this new tag, we imaged the protein location associated with the alteration of a DNA-methylation pathway with an ultra-high resolution of 30 nanometers. Importantly, the excellent energy resolution of XRM enables multicolor imaging using different peroxidase tags. The development of GXET enlightens the way to nanoscopic imaging for biological studies.


Sign in / Sign up

Export Citation Format

Share Document